
Klimaexpertise: Tagebau Garzweiler II -Klimaökologische Bewertung des geplanten Tagebausees

Prüfung und Bewertung der vorliegenden Datengrundlagen, modellgestützte Analyse der planänderungsbedingten Auswirkungen des Tagebausees auf das lokale und regionale Klima

RWE Power Aktiengesellschaft

GEO-NET Umweltconsulting GmbH

Große Pfahlstraße 5a 30161 Hannover Tel. (0511) 3887200 FAX (0511) 3887201 www.geo-net.de

In Zusammenarbeit mit:

Prof. Dr. Günter Groß

Anerkannt beratender Meteorologe (DMG),

Öffentlich bestellter Gutachter für Immissionsfragen und

Kleinklima der IHK Hannover-Hildesheim

Hannover, Januar 2024

Inhaltsverzeichnis

inn	aitsve	erzeicnnis	1
Tab	ellen	verzeichnis	3
Glo	ssar		4
1.	Einl	eitung	5
2.		Planungen zum Tagebausee Garzweiler	
3.		nawandel	
	3.2	Beobachteter Klimawandel	
	3.3	Zukünftiger Klimawandel	
		3.3.1 Temperatur, Niederschlag und Verdunstung	
		3.3.2 Wind und Sturm	
4.	Met	hodik der Modellrechnung	18
	4.1	Das Mesoskalenmodell FITNAH	18
	4.2	Eingangsdaten: Geländehöhe und Nutzungsstruktur	21
	4.3	Modellunsicherheiten	26
	4.4	Betrachtete Wetterlagen	28
5. E	rgebi	nisse	32
	5.1.]	Modellergebnisse	33
		5.1.1 Nachtsituation: Bodennahe Lufttemperatur (4 Uhr)	33
		5.1.2 Nachtsituation: Kaltluftvolumenstrom (4 Uhr)	37
		5.1.3 Tagsituation: Physiologisch äquivalente Temperatur (PET)	41
		5.1.4 Ausprägung der relativen Luftfeuchte	46
6.	Bev	vertung der klimaökologischen Situation	50
	6.1 H	Klimaökologische Situation	50
	6.2	Klimawandel	52
	6.3	Fazit	53
Lite	ratur		54
Anh	ang		56

Abbildungsverzeichnis

schraffiert) und Politischer Verständigung vom 04.10.2022
Abb. 2: Tagebausee Garzweiler gem. Leitentscheidung 2023 mit Darstellung Verkleinerung (rot eingefärbte Flächen)
Abb. 3: Entwicklung der Jahresmitteltemperatur im Raum Garzweiler im Zeitraum 1881 bis 20198
Abb. 4: Räumliche Darstellung der Anzahl Heißer Tage (Tmax ≥ 30 °C) in verschiedenen Perioden im Raum Garzweiler9
Abb. 5: Verlauf der Tagesmitteltemperatur nach den RCP-Szenarien 2.6, 4.5 und 8.5 für den Zeitraum 1980 bis 2100
Abb. 6: Anzahl der Frosttage nach den RCP-Szenarien 2.6, 4.5 und 8.5 für den Zeitraum 1980 bis 210012
Abb. 7: Verlauf der Anzahl an Tagen mit Frost-Tau-Wechseln nach den RCP-Szenarien 2.6, 4.5 und 8.5 für den Zeitraum 1980 bis 210013
Abb. 8: Monatliche Veränderung der Niederschlagssummen für die RCP-Szenarien 4.5(oben) und 8.5 (unten) sowie die nahe, mittlere und ferne Zukunft14
Abb. 9: Monatliche Veränderung der potenziellen Verdunstung für die RCP-Szenarien 4.5 (oben) und 8.5 (unten) sowie die nahe, mittlere und ferne Zukunft15
Abb. 10: Monatliche Veränderung der Länge von Hitzeperioden (aufeinanderfolgende Tage mit Tmax >= 30 °C) für die RCP-Szenarien 4.5 (oben) und 8.5 (unten) sowie die nahe, mittlere und ferne Zukunft16
Abb. 12: Unterschiedliche Rasterweiten (links: 500 m x 500 m; rechts: 125 m x 125 m) bei einem digitalem Geländehöhenmodell19
Abb. 13: Eingangsdaten für die Modellrechnung20
Abb. 14: Digitales Geländemodell des Ist-Zustandes für das Untersuchungsgebiet Tagebausee Garzweiler21
Abb. 15: Digitales Geländemodell der Tagebauseevariante B für das Untersuchungsgebiet Tagebausee Garzweiler22
Abb. 16: Digitales Geländemodell der Tagebauseevariante B für das Untersuchungsgebiet Tagebausee Garzweiler23
Abb. 17: Aufbereitete Landnutzung des Modellszenarios Tagebauseevariante A25
Abb. 18: Aufbereitete Landnutzung des Modellszenarios Tagebauseevariante B25
Abb. 19: Prinzipskizze zu Belastungs- und Entlastungsräumen in Abhängigkeit von der vorherrschenden Wetterlage am Beispiel Freiraum – Stadt28
Abb. 20: Langjährige mittlere monatliche Anzahl an windschwachen Strahlungsnächten im Raum Garzweiler (59,2 pro Jahr) für den Zeitraum 1971 - 2020, basierend auf der nahegelegenen DWD-Station Köln-Bonn29
Abb. 21: Temperaturverlauf und Vertikalprofil der Windgeschwindigkeit mittags für verschiedene Landnutzungen29
Abb. 22: Häufigkeitsverteilung der rel. Luftfeuchtigkeit nach Tagesmittelwerten für den Zeitraum 1891 bis 201131
Abb. 23: Darstellung der Häufigkeitsverteilung der verschiedenen Windrichtungen für den

Kartenverzeichnis

Karte 1: Bodennahe nachtliche Lufttemperatur im Referenzszenario (Variante A) während einer autochthonen Wetterlage3	3
Karte 2: Bodennahe nächtliche Lufttemperatur im Planungsszenario (Variante B) während einer autochthonen Wetterlage3	4
Karte 3: Abweichung der bodennahen nächtlichen Lufttemperatur zwischen Tagebauseevariante A und B3	55
Karte 4: Nächtlicher Kaltluftvolumenstrom im Plangebiet der Planvariante A während einer autochthonen Wetterlage3	
Karte 5: Nächtlicher Kaltluftvolumenstrom im Plangebiet der Planvariante B während einer autochthonen Wetterlage3	
Karte 6: Differenzkarte des nächtlichen Kaltluftvolumenstroms3	9
Karte 7: Physiologisch äquivalente Temperatur (PET) im Szenario der	
Tagebauseevariante A während einer autochthonen Wetterlage4	-2
Karte 8: Physiologisch äquivalente Temperatur (PET) im Szenario der	
Tagebauseevariante B während einer autochthonen Wetterlage4	
Karte 9: Differenzkarte zur Physiologisch äquivalente Temperatur (PET)4	
Karte 10: Verteilung der relativen Luftfeuchtigkeit der Tagebauseevariante A um 6 Uhr morgens4	
Karte 11: Verteilung der relativen Luftfeuchtigkeit der Tagebauseevariante B um 6 Uhr morgens4	
Karte 12: Verteilung der relativen Luftfeuchtigkeit der Tagebauseevariante A um 15 Uhr4	3
Karte 13: Verteilung der relativen Luftfeuchtigkeit der Tagebauseevariante B um 15 Uhr4	ĻÇ
Tabellenverzeichnis	
Tabelle 1: Für das verwendete Modellensemble verfügbare Ensemblemitglieder (Modellkombinationen) und Szenarien (RCP 2.6, RCP 4.5, RCP 8.5). GCM - Globales Klimamodell (Global Climate Model), RCM - Regionales	
Klimamodell (Regional Climate Model)1	.(
Tabelle 2: Auswirkungen des Klimawandels auf ausgewählte Kenngrößen des Untersuchungsgebiets1	. 7
Tabelle 3: Nutzungskategorien im Untersuchungsgebiet2	
Tabelle 4: Zuordnung von Schwellenwerten des Bewertungsindexes PET während der	
Tagstunden (nach VDI 2004)4	

Glossar

Austauscharme Wetterlage: → *Autochthone Wetterlage*

Autochthone Wetterlage: Durch lokale und regionale Einflüsse bestimmte Wetterlage mit schwacher Windströmung und ungehinderten Ein- und Ausstrahlungsbedingungen, die durch ausgeprägte Tagesgänge der Lufttemperatur, der Luftfeuchte und der Strahlung gekennzeichnet ist. Die meteorologische Situation in Bodennähe wird vornehmlich durch den Wärme- und Strahlungshaushalt und nur in geringem Maße durch die Luftmasse geprägt, sodass sich lokale Klimate wie das Stadtklima bzw. lokale Windsysteme wie z.B. Berg- und Talwinde am stärksten ausprägen können.

Bioklima: Beschreibt die direkten und indirekten Einflüsse von Wetter, Witterung und Klima (= atmosphärische Umgebungsbedingungen) auf die lebenden Organismen in den verschiedenen Landschaftsteilen, insbesondere auf den Menschen (Humanbioklima).

Flurwind: Thermisch bedingte, relativ schwache Ausgleichsströmung, die durch horizontale Temperatur- und Druckunterschiede zwischen vegetationsgeprägten Freiflächen im Umland und (dicht) bebauten Gebieten entsteht. Flurwinde strömen vor allem in den Abend- und Nachtstunden schubweise in Richtung der Überwärmungsbereiche (meist Innenstadt oder Stadtteilzentrum).

Kaltluft: Luftmasse, die im Vergleich zu ihrer Umgebung bzw. zur Obergrenze der entsprechenden Bodeninversion eine geringere Temperatur aufweist und sich als Ergebnis des nächtlichen Abkühlungsprozesses der bodennahen Atmosphäre ergibt. Der ausstrahlungsbedingte Abkühlungsprozess der bodennahen Luft ist umso stärker, je geringer die Wärmekapazität des Untergrundes ist, und über Wiesen, Acker- und Brachflächen am höchsten. Konkrete Festlegungen über die Mindesttemperaturdifferenz zwischen Kaltluft und Umgebung oder etwa die Mindestgröße des Kaltluftvolumens, die das Phänomen quantitativ charakterisieren, gibt es bisher nicht (VDI 2003).

Kaltluftvolumenstrom: Vereinfacht ausgedrückt das Produkt der Fließgeschwindigkeit der → Kaltluft, ihrer vertikalen Ausdehnung (Schichthöhe) und der horizontalen Ausdehnung des durchflossenen Querschnitts (Durchflussbreite; Einheit m³/(s*m)). Der Kaltluftvolumenstrom beschreibt somit diejenige Menge an → Kaltluft, die in jeder Sekunde durch den Querschnitt beispielsweise eines Hanges oder einer → Kaltluftleitbahn fließt. Anders als das → Strömungsfeld berücksichtigt der Kaltluftvolumenstrom somit auch Fließbewegungen oberhalb der bodennahen Schicht.

PET (Physiologisch äquivalente Temperatur): Humanbioklimatischer Index zur Kennzeichnung der Wärmebelastung des Menschen, der Aussagen zur Lufttemperatur, Luftfeuchte, Windgeschwindigkeit sowie kurz- und langwelligen Strahlungsflüssen kombiniert und aus einem Wärmehaushaltsmodell abgeleitet wird

RCP-Szenarien: Szenarien für die Entwicklung der Konzentration von klimarelevanten Treibhausgasen in der Atmosphäre. Die RCP-Szenarien lösen im fünften Sachstandsbericht des "Weltklimarats" der Vereinten Nationen (IPCC) die bis dahin genutzten, auf sozio-ökonomischen Faktoren beruhenden SRES-Szenarien ab. Die Zahl in der Bezeichnung RCP 2.6 ("Klimaschutz-Szenario"), RCP 4.5 bzw. RCP 8.5 ("Weiter wie bisher-Szenario") gibt den zusätzlichen Strahlungsantrieb in W/m² bis zum Jahr 2100 im Vergleich zum vorindustriellen Stand Mitte des 19. Jahrhunderts an (*Representative Concentration Pathway*).

1. Einleitung

Seit 2017 läuft das Verfahren zur Änderung eines bereits im Jahr 1995 genehmigten Braunkohlenplanes betreffend den Tagebau Garzweiler II, in dem die Anlage eines 2.300 ha großen Tagebausees vorgesehen war. In den seinerzeit erstellten Angaben für die Umweltverträglichkeitsprüfung (UVP) wird keine erhebliche Beeinflussung des Klimas erwartet: "Außerhalb des Abbaufeldes sind durch den Anschlußtagebau Garzweiler II keine Auswirkungen auf das regionale Klima zu erwarten. Bezüglich der lokalen Klimasituation ist festzuhalten, daß nach der Wiedernutzbarmachung die Kaltluftströme zum Seebereich hin abfließen und von dort aus über das Nierstal abgeleitet werden, so daß der Kaltluftabfluß Richtung Norden erhalten bleibt. Der Kaltluftabfluß durch das Nüsterbachtal wird mengenmäßig reduziert. Dies ist jedoch unerheblich, da die Orte Katzem und Lövenich bereits heute weitestgehend als Kaltluftsperren wirken." (RHEINBRAUN 1992, Kapitel 7, S. 99).

Aufgrund der Leitentscheidungen des Landes NRW aus den Jahren 2016 und 2021 sowie der politischen Verständigung zwischen Bund, Land NRW und RWE vom 04.10.2022 und der daraus resultierenden Leitentscheidung 2023 des Landes NRW soll der Tagebau Garzweiler II – und damit auch der geplante See – in seiner Flächenausdehnung verringert und muss als Folge davon in seiner Abgrenzung deutlich nach Osten verschoben werden. Das vorliegende Gutachten soll klimaökologische Rahmendaten in einer hohen räumlichen Auflösung liefern, um eine sachgerechte Beurteilung der änderungsbedingten Auswirkungen auf das Schutzgut Klima innerhalb des Planungsprozesses zu gewährleisten. Konkret geht es hierbei darum, die klimatischen Auswirkungen des verkleinerten und lagemäßig in Teilbereichen verschobenen Tagebausees Garzweiler (unter Berücksichtigung und Fortschreibung der UVP-Angaben 1992) zu bewerten.

Um darüber hinaus die Folgen des Klimawandels für den Raum Garzweiler einordnen zu können, wurde entsprechend dem Stand der Technik auf Ergebnisse regionaler Klimamodelle der EURO-CORDEX-Initiative zurückgegriffen, die weiträumige Aussagen zur klimawandelbedingten Entwicklung vieler meteorologischer Kenngrößen erlauben. Gemäß bundesweiter Leitlinien (Linke et al 2016) wurde dabei ein Ensemble aus Klimamodellen verwendet, das verschiedene Klimaszenarien zur Entwicklung der zukünftigen Treibhausgasemissionen berücksichtigt (RCP-Szenarien).

2. Die Planungen zum Tagebausee Garzweiler

Nach dem Braunkohlenplan Garzweiler II (BEZIRKSREGIERUNG KÖLN 1995) soll als Bergbaufolgelandschaft nach Beendigung des Abbaus von Braunkohle im Tagebau Garzweiler II das verbleibende Restloch im westlichen Teil des Tagebaues zu einem See umgestaltet werden. Hierbei war zunächst ein See mit einer Größe von 2.300 ha landesplanerisch genehmigt worden. Aufgrund der Leitentscheidungen des Landes NRW aus den Jahren 2016 und 2021 musste die Abbaufläche des Tagebau Garzweiler II verkleinert werden. Eine weitere Verkleinerung durch die Aussparung der Ortschaften des 3. Umsiedlungsabschnitts im Stadtgebiet Erkelenz war das Ergebnis der Politischen Verständigung, die am 04.10.2022 zwischen dem Bund, dem Land NRW und der RWE AG geschlossen wurde. In dieser Verständigung wurde außerdem festgelegt, dass die Kohleförderung und -verstromung aus dem Tagebau Garzweiler im Jahr 2030 enden soll. Das Vorhaben gemäß Politischer Verständigung vom 04.10.2022 liegt dieser Untersuchung zugrunde. Gegenüber des in 1995 genehmigten Vorhabens kommt es zu einer wesentlichen Verringerung der Abbaufläche. Als Folge davon verringert sich die Fläche des geplanten Sees geringfügig um circa 40 ha; der geplante See gemäß Politischer Verständigung hat somit eine Größe von circa 2.260 ha. In Teilbereichen verändern sich hiervon unabhängig die Umgrenzung und die Lage des Sees (die zentrale Mitte des Tagebaus verschiebt sich um ca. 4 km nach Osten), wodurch sich die neue und ursprünglich vorgesehene Seeform nur noch geringfügig überschneiden (Abb. 1).

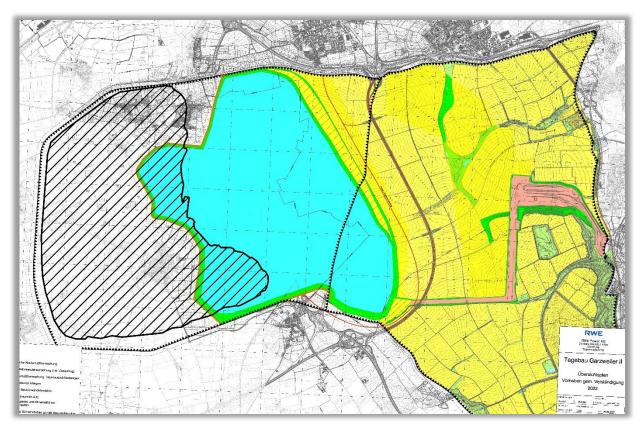


Abb. 1: Vergleich Lage der Tagebauseen Garzweiler gem. Braunkohlenplan 1995 (schwarz schraffiert) und Politischer Verständigung vom 04.10.2022.

Im Zuge des früheren Abbauendes kommt es zu einer räumlichen Neuabgrenzung des Tagebaus, die eine deutliche Verschiebung des Seekörpers in östliche Richtung zur Folge hat. Weitere Folge ist, dass die ursprünglich nach der Wiedernutzbarmachung neu wiederherzustellende Autobahn A61 nicht

wiederhergestellt wird, sondern für den Abschnitt zwischen der A46 und dem Dreieck Jackerath gemeinsam auf der Trasse der A44 verläuft. Zudem bleiben unter anderem die Ortslagen Holzweiler, Berverath, Kuckum und Keyenberg, abweichend zum vorherigen Braunkohlenplan, erhalten.

Aktuelle Plananpassungen

Zeitgleich zur Erarbeitung dieses Gutachtens hat die Landesregierung NRW die raumbedeutsamen Aspekte der vorgenannten Politischen Verständigung zwischen Bund, Land NRW und RWE AG vom 04.10.2022 in eine neue Leitentscheidung eingebracht. Das Landeskabinett hat diese Leitentscheidung 2023 am 19.09.2023 beschlossen. Das Vorhaben wurde aufgrund der Vorgaben aus dieser Leitentscheidung 2023 noch einmal leicht angepasst, mit dem Ergebnis, dass sich die Seefläche um circa 45 ha verkleinert und nun eine Größe von circa 2.215 ha haben wird (Abb. 2). Da diese geringfügige Verkleinerung keine wesentlichen Auswirkungen auf das Ergebnis dieses Gutachtens hat, werden die im Gutachten dargestellten Analyseergebnisse nicht angepasst.

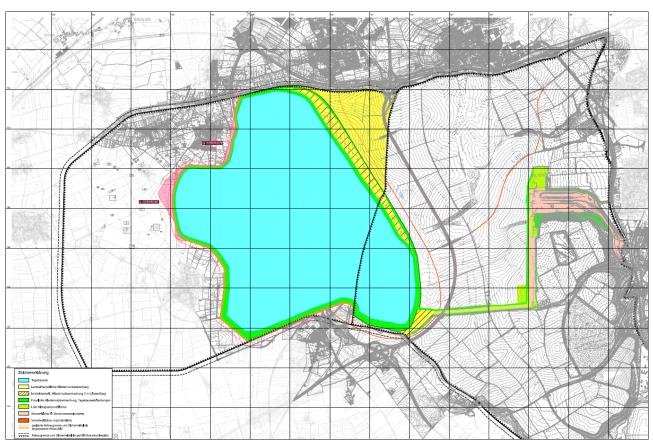


Abb. 2: Tagebausee Garzweiler gem. Leitentscheidung 2023 mit Darstellung Verkleinerung (rot eingefärbte Flächen).

3. Klimawandel

Die Analysen zum Klimawandel dieser Arbeit beruhen auf zwei Ansätzen. Zum einen kann über Beobachtungsdaten der vergangene bzw. stattgefundene Klimawandel dargestellt und zum anderen anhand von verschiedenen Regionalmodelldaten die zukünftige Entwicklung für verschiedene Szenarien projiziert werden. Bei letzterem kann sowohl in die Zukunft als auch in die Vergangenheit projiziert werden, was den Vorteil hat, dass die projizierten Modelldaten der Zukunft und Vergangenheit besser miteinander vergleichbar sind. Dabei ist die Übereinstimmung der projizierten Vergangenheit mit den entsprechenden Beobachtungsdaten aufgrund der bekannten Rahmenbedingungen sehr hoch, wohingegen die Zukunftsprognosen der verschiedenen Regionalmodelle mit zunehmender Entfernung des Zeithorizonts immer unpräziser werden- sprich die Spannweite der Vorhersage immer weiter auseinander geht.

3.2 Beobachteter Klimawandel

Beobachtungsdaten: Für die Beschreibung der klimatischen Entwicklung im Raum Garzweiler wurden auf ein regelmäßiges Gitter interpolierte Stationsdaten des Deutschen Wetterdienstes verwendet (Kaspar et al., 2013). Die räumliche Auflösung dieser Daten beträgt 1 x 1 km und die zeitliche Auflösung beruht auf jährlichen Mittelwerten. Die ältesten Beobachtungsdaten reichen bis in das Jahr 1881 zurück. Dies trifft für die meteorologischen Variablen jährliche Mitteltemperatur und Niederschlagssumme zu. Minimum- und Maximumtemperaturen sind ab 1901 verfügbar und Daten der thermischen Kennwerte sowie der Starkniederschläge ab 1951. Gewisse Unplausibilitäten der Gitterdaten beruhen im Wesentlichen auf einer über die Zeit veränderten Stationsdichte sowie der geänderten Lage der zur Interpolation der Daten verwendeten Stationen. Weiterhin hat sich die Messtechnik im betrachteten Zeithorizont weiterentwickelt, sodass bei den älteren Zeitreihen höhere Messungenauigkeiten hinzunehmen sind als bei den Zeitreihen jüngeren Datums. Für die hier durchgeführten Auswertungen und Betrachtungen ist die Genauigkeit der Daten jedoch vollkommen ausreichend und stellt eine solide Datenbasis dar.

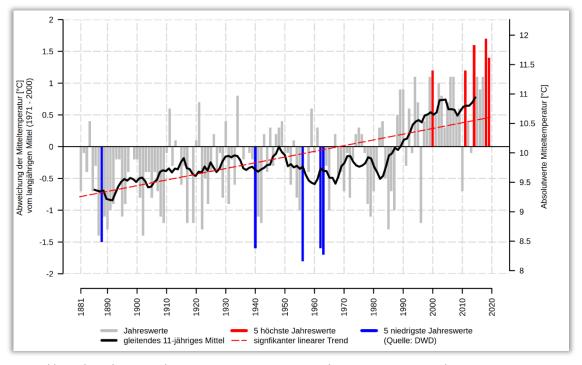


Abb. 3: Entwicklung der Jahresmitteltemperatur im Raum Garzweiler im Zeitraum 1881 bis 2019.

Beim Blick in die Vergangenheit wird deutlich, dass im Raum Garzweiler – dem nationalen und globalen Trend folgend – bereits eine deutliche Erwärmung stattgefunden hat. So ist die Temperatur seit Beginn der meteorologischen Aufzeichnungen um 1,3 °C gestiegen (Mittelwert 1989 – 2019 im Vergleich zu 1881 – 1910). Zudem sind vier der fünf wärmsten Jahre seit 1881 allesamt in der letzten Dekade aufgetreten (Abb. 3).

Noch stärker als die "schleichende" Änderung der Jahresmitteltemperatur wirken sich Hitzeperioden auf das Wohlbefinden und die Gesundheit der Bevölkerung aus. Die Anzahl an Sommertagen (Tmax ≥ 25 °C) und insbesondere Heißen Tagen (Tmax ≥ 30 °C) kann als Indiz für die Häufigkeit belastender Phasen verstanden werden. Im Raum Garzweiler zeigt sich jeweils ein Anstieg dieser Kenntage: Im Vergleich der Periode 1989 − 2019 zu 1971 − 2000 ist die Anzahl an Sommertagen im Mittel von 34 auf 42 pro Jahr und die Anzahl an Heißen Tagen von 6 auf 9 pro Jahr gestiegen (Abb. 4). Die Lage des Tagebaus Garzweiler ist innerhalb des Analyseraums, welcher auch die Tagebaue Hambach und Inden beinhaltet, in Form der schwarzen Kreissignatur dargestellt.

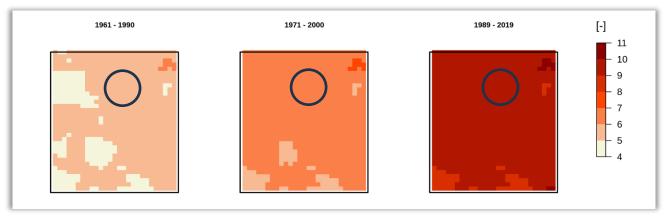


Abb. 4: Räumliche Darstellung der Anzahl Heißer Tage (Tmax ≥ 30 °C) in verschiedenen Perioden im Raum Garzweiler (Lage Tagebau Garweiler = schwarzer Kreis; eigene Berechnung nach DWD 2021).

3.3 Zukünftiger Klimawandel

Regionalmodelldaten: Die Analyse zukünftiger klimatischer Änderungen basiert auf Daten von numerischen, regionalen Klimamodellen der EURO-CORDEX-Initiative. EURO-CORDEX ist der europäische Zweig der CORDEX-Initiative, welche regionale Projektionen des Klimawandels für alle terrestrischen Gebiete der Erde im Rahmen des Zeitplanes des fünften IPCC Assessment Reports (AR5) und darüber hinaus erstellt (Giorgi et al. 2009).

EURO-CORDEX-Daten sind für die wissenschaftliche und kommerzielle Nutzung frei verfügbar und werden im Internet über mehrere Knoten der Earth System Grid Federation (ESGF) bereitgestellt (www.euro-cordex.net). Verwendet wurden tägliche Daten mit einer räumlichen Auflösung von ca. 12,5 km (0,11°). Tabelle 1 listet die zum Zeitpunkt der Durchführung der Auswertungen verfügbaren Modellrechnungen von EURO-CORDEX auf, welche die Grundlage für das zusammengestellte Ensemble bilden. EURO-CORDEX ist ein fortlaufendes Projekt, d.h. die Datenbanken mit den Modellergebnissen werden permanent aktualisiert. Somit sind eventuell in der Zeit bis zur Erstellung dieses Berichtes weitere Modellläufe für Europa hinzugekommen, die hier jedoch nicht berücksichtigt werden konnten.

Tabelle 1: Für das verwendete Modellensemble verfügbare Ensemblemitglieder (Modellkombinationen) und Szenarien (RCP 2.6, RCP 4.5, RCP 8.5). GCM - Globales Klimamodell (Global Climate Model), RCM - Regionales Klimamodell (Regional Climate Model).

GCM	RCM	historical	rcp26	rcp45	rcp85
CanESM2	CCLM	1	×	×	1
EC-EARTH	CCLM	1	1	1	1
EC-EARTH	RACMO22E	1	1	√	1
EC-EARTH	RACMO22E	1	×	1	1
EC-EARTH	RCA4	1	1	1	1
IPSL-CM5A	RCA4	1	×	1	1
MIROC5	CCLM	1	1	×	×
MIROC5	REMO2015	1	×	×	1
HadGEM2-ES	WETTREG2013	1	×	×	1
HadGEM2-ES	CCLM	1	×	1	1
HadGEM2-ES	RACMO22E	1	1	1	1
HadGEM2-ES	STARS3	1	1	×	×
HadGEM2-ES	RCA4	1	1	1	1
MPI-ESM	WETTREG2013	1	1	×	×
MPI-ESM	CCLM	1	×	1	1
MPI-ESM	REMO2009	1	1	1	1
MPI-ESM	REMO2009	1	1	1	1
MPI-ESM	STARS3	1	1	×	×
MPI-ESM	RCA4	1	1	1	1

Hauptverantwortlich für den Anstieg der globalen Mitteltemperaturen sind anthropogen bedingte CO₂-Emissionen. Da heute noch nicht absehbar ist, wie sich die CO₂-Emissionen zukünftig entwickeln, werden diese in Klimamodellen in Form von Szenarien mit unterschiedlicher CO₂-Entwicklung über die Zeit

berücksichtigt, die bis zum Ende des Jahrhunderts einen bestimmten Strahlungsantrieb hervorrufen. Für Europa stehen aktuell drei verschiedene Klimaszenarien zur Verfügung: RCP 2.6, RCP 4.5 und RCP 8.5 (RCP = Representative Concentration Pathways). Die Zahl in der Bezeichnung der Szenarien benennt den mittleren Strahlungsantrieb in W/m^2 , der in ihrem projizierten Verlauf zum Ende des 21. Jahrhunderts erreicht wird (Moss et al. 2010):

- Das Szenario RCP 2.6 beschreibt einen Anstieg des anthropogenen Strahlungsantriebes bis zum Jahr 2040 auf ca. 3 W/m². Zum Ende des Jahrhunderts sinkt dieser langsam, aber stetig auf 2,6 W/m² ab. Die globale Mitteltemperatur würde in diesem Szenario das 2 °C-Ziel nicht überschreiten, sodass das RCP 2.6 oft auch als "Klimaschutzszenario" bezeichnet wird.
- * RCP 4.5 zeigt einen steilen Anstieg des anthropogenen Strahlungsantriebes bis etwa zur Mitte des 21. Jahrhunderts, der danach bis ca. 2075 nur noch geringfügig steigt und in der Folge bei 4,5 W/m² stagniert.
- Das Szenario RCP 8.5 weist hingegen den stärksten Anstieg des Strahlungsantriebes auf bis zu 8,5 W/m² auf, der sich bis zum Ende des Jahrhunderts nicht abschwächt und einen Anstieg der globalen Mitteltemperatur um ca. 4,8 °C gegenüber dem Zeitraum 1985-2005 bewirken würde. Das Szenario RCP 8.5 wird auch als "Weiter wie bisher Szenario" bezeichnet.

Für die Beschreibung des zukünftigen Klimawandels werden klimatische Beobachtungen einer sogenannten Referenzperiode benötigt. Diese sollte einen Zeitraum umfassen, in welchem die klimatischen Auswirkungen der globalen Erwärmung noch nicht so stark in Erscheinung getreten sind. Die WMO (World Meteorological Organisation) empfiehlt die Verwendung der sogenannten 30-jährigen Klimanormalperiode von 1961 bis 1990. Da jedoch bei einigen der verwendeten Regionalen Klimamodelle der Zeitraum des Referenzlaufs erst 1971 beginnt, wurde im Rahmen dieses Projektes der Zeitraum von 1971 bis 2000 als Referenzperiode festgelegt. Dieser ist im Verhältnis zu den betrachteten Zukunftszeiträumen noch ausreichend wenig vom Klimawandel beeinflusst, sodass eine vergleichende Betrachtung die wesentlichen klimatischen Veränderungen aufzeigt.

Die weltweiten CO₂-Emissionen verzeichnen seit den 1950er-Jahren einen permanenten Anstieg. In den letzten Dekaden befanden wir uns, nach den Ergebnissen des Global Carbon Projektes, mit den globalen CO₂-Emissionen auf dem "Pfad" des RCP-Szenarios 8.5 (Boden 2017, Peters et al. 2013). Selbst ein abrupter weltweiter Rückgang des CO₂-Ausstoßes würde, aufgrund der Trägheit des Klimasystems, in Kürze keine signifikante Änderung herbeiführen. Für die Einschätzung zukünftiger Klimarisiken wird das RCP 8.5 als geeignetes Szenario angesehen (Schwalm et al. 2020). Aus diesem Grund und im Sinne des Vorsorgegedankens werden im vorliegenden Bericht vornehmlich Grafiken zu Klimaänderungen des RCP-Szenarios 8.5 platziert. Da derzeit allerdings nicht ausgeschlossen werden kann, dass Klimaschutzmaßnahmen mit einer entsprechenden Verzögerung ihre Wirkung zeigen, ist für mittlere und ferne Zukunftsszenarien zum aktuellen Stand weiterhin auch eine abgeschwächte klimatische Erwärmung möglich. Mit Blick auf die Befülldauer des Tagebausees bis in die zweite Hälfte dieses Jahrhunderts wird neben dem Szenario RCP 8.5 deshalb auch das Scenario RCP 4.5 zusätzlich betrachtet. Die Klimaprojektionen auf Basis des RCP 2.6 Szenarios werden schon in der Gegenwart häufig übertroffen, weshalb dieses Szenario in diesem Gutachten nicht näher berücksichtigt wird, wenngleich dieses Szenario in einigen Zeitreihendiagrammen standardmäßig dargestellt wird.

3.3.1 Temperatur, Niederschlag und Verdunstung

Die Analyse der vom EURO-CORDEX-Modellensemble projizierten klimatischen Änderungen für die Klimaszenarien RCP 2.6, RCP 4.5 und RCP 8.5 im Untersuchungsgebiet zeigt für die Jahresmitteltemperaturen einen signifikanten Anstieg bis zum Ende des Jahrhunderts (Abb. 5). Dieser Anstieg tritt in allen Monaten des Jahres auf, wobei die Temperaturen in den Wintermonaten stärker zunehmen als in den Sommermonaten. Die mit dem Temperaturanstieg einhergehende Erwärmung wirkt sich dementsprechend auf die Veränderung der thermischen Kenntage im Untersuchungsgebiet aus. So wird die Anzahl an Sommertagen, heißen Tagen und Tropennächten deutlich zunehmen sowie die Anzahl an Tagen mit Frost-Tau-Wechsel, Frost- und Eistagen abnehmen (vgl. Tabelle 2 u. Abb. 6 und Abb. 7). Weiterhin gibt es Hinweise, dass die Länge von Hitzeperioden vermutlich zunimmt (Abb. 10).

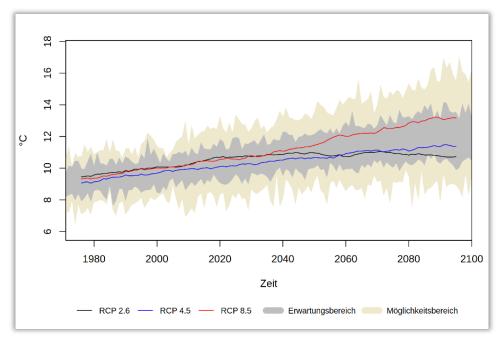


Abb. 5: Verlauf der Tagesmitteltemperatur nach den RCP-Szenarien 2.6, 4.5 und 8.5 für den Zeitraum 1980 bis 2100.

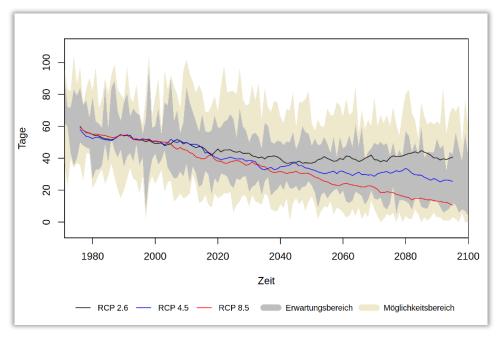


Abb. 6: Anzahl der Frosttage nach den RCP-Szenarien 2.6, 4.5 und 8.5 für den Zeitraum 1980 bis 2100.

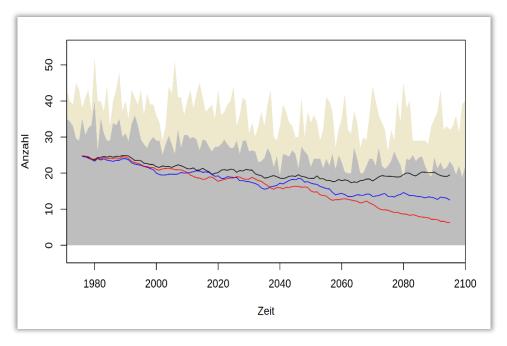
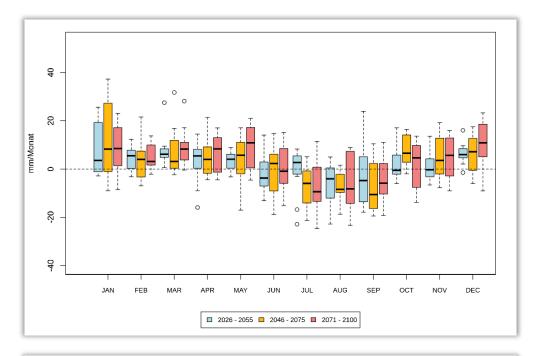


Abb. 7: Verlauf der Anzahl an Tagen mit Frost-Tau-Wechseln nach den RCP-Szenarien 2.6, 4.5 und 8.5 für den Zeitraum 1980 bis 2100.


In Bezug auf die Jahresniederschlagssumme sind im Raum Garzweiler keine eindeutigen Auswirkungen durch den Klimawandel auszumachen. Wird der Median aller Modellrechnungen herangezogen, zeigen die RCP-Szenarien 4.5 und 8.5 leicht steigende Jahresniederschläge für das 21. Jahrhundert (Tabelle 2). Mit Blick auf den Erwartungsbereich zeigt sich eine gewisse Variabilität zwischen den Modellen, die teilweise leichte Abnahmen voraussagen, in der Mehrzahl jedoch auf relativ geringe Auswirkungen schließen lassen. Insgesamt kann für den Raum Garzweiler eine Tendenz zukünftig leicht steigender Jahresniederschläge abgeleitet werden, die aufgrund der geringen Änderungen jedoch keine statistische Signifikanz aufweist.

Neben den Niederschlagssummen ist der Zeitpunkt, wann es (wieviel) regnet entscheidend u.a. für die Vegetation und den Bodenwasserhaushalt. Der Blick auf den Jahresgang offenbart saisonale Unterschiede in der zukünftigen Entwicklung des Niederschlags. In allen RCP-Szenarien ist eine Tendenz geringerer Niederschläge im Sommer und leicht höherer Werte in den übrigen Monaten zu erkennen. Am stärksten treten diese Effekte bei langfristiger Betrachtung bis Ende des Jahrhunderts und im RCP-Szenario 8.5 auf, das gerade für den Juli und August, teils noch für Juni und September, deutlich geringere Niederschlagssummen projiziert (Abb. 8, unten). Das Szenario RCP 4.5 weist, wenn auch in geringerer Ausprägung, dieselben Änderungsmuster auf (Abb. 8, oben). Die in den Abbildungen wahrnehmbare Niederschlagsverschiebung mit Abnahmen im Sommer und Zunahmen vornehmlich im Winter beinhaltet statistische Unsicherheiten, sollte jedoch als auffallende Tendenz mindestens Erwähnung finden.

Wie beim Niederschlag zeigen auch die Prognosen zur klimatischen Wasserbilanz im Jahresgang nachhaltige Veränderungen. Die Temperaturzunahme bewirkt zunehmende Verdunstungsraten (Abb. 9, Tabelle 2), die vornehmlich in den Sommermonaten zu einer Abnahme der klimatischen Wasserbilanz und somit zu einem Rückgang des natürlichen Wasserdargebots führen können. Im Zusammenhang mit der Temperaturzunahme, der Verlängerung von Hitzeperioden (Abb. 10) und der erkennbaren Niederschlagsverschiebung muss künftig besonders in den Sommermonaten zunehmend mit erhöhter Trockenheit gerechnet werden

(Tabelle 2). Besonders betroffen dürften dabei Gebiete sein, die bereits heute Trockenheitstendenzen aufweisen.

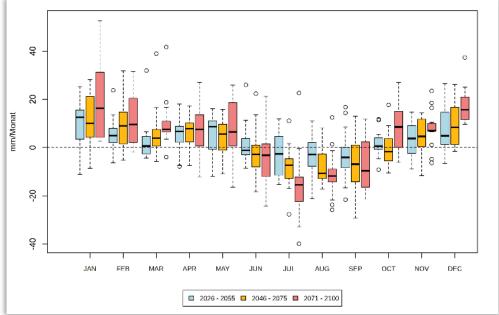
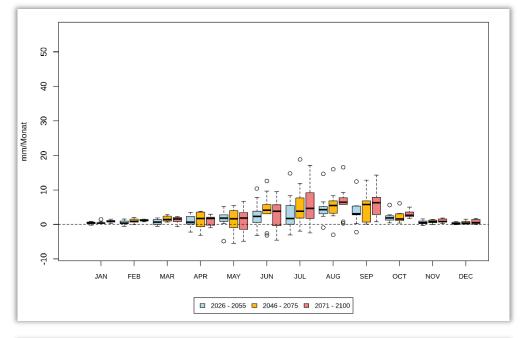



Abb. 8: Monatliche Veränderung der Niederschlagssummen für die RCP-Szenarien 4.5(oben) und 8.5 (unten) sowie die nahe, mittlere und ferne Zukunft.

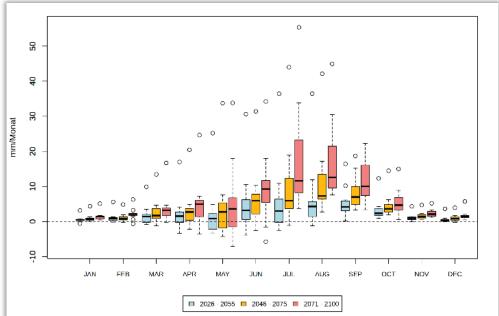
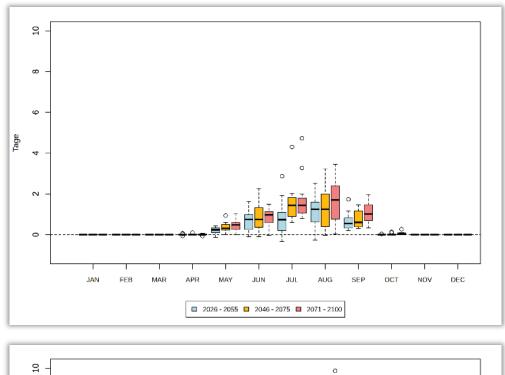



Abb. 9: Monatliche Veränderung der potenziellen Verdunstung für die RCP-Szenarien 4.5 (oben) und 8.5 (unten) sowie die nahe, mittlere und ferne Zukunft.

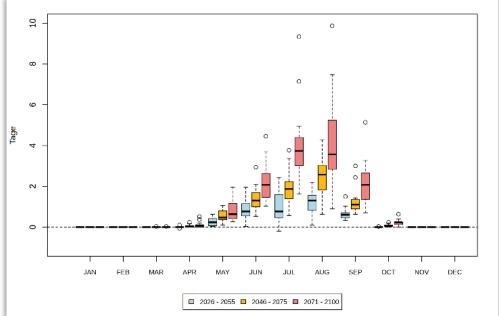


Abb. 10: Monatliche Veränderung der Länge von Hitzeperioden (aufeinanderfolgende Tage mit Tmax >= 30 °C) für die RCP-Szenarien 4.5 (oben) und 8.5 (unten) sowie die nahe, mittlere und ferne Zukunft.

Tabelle 2: Auswirkungen des Klimawandels auf ausgewählte Kenngrößen des Untersuchungsgebiets – die Spannbreite spiegelt das Änderungssignal des 15. bis 85. Perzentils für 39 Modellläufe und die RCP-Szenarien 4.5, 8.5 wider (basierend auf EURO-CORDEX-Daten, Referenzperiode basierend auf DWD-Daten).

	Referenz- periode (1971-2000)	Nahe Zukunft (2026-2055)	Mittlere Zukunft (2046-2075)	Ferne Zukunft (2071-2100)
Jahresmitteltemperatur [°C]	10,3	11,1 – 12,3	11,2 – 13,4	11,7 – 14,9
Heiße Tage [n/Jahr] (T _{max} ≥ 30°C)	6	10 - 17	11 - 24	13 - 37
Tropennächte [n/Jahr] (T _{min} ≥ 20°C)	0	0 – 2	0 – 6	1 – 13
Frosttage [n/Jahr] (T _{min} < 0°C)	51	25 – 38	17 – 37	7 – 30
Jahresniederschlag [mm/Jahr]	715	714 – 771	705 – 785	717 – 822
Starkniederschläge [n/Jahr]	17	17 – 22	17 – 22	18 – 24
Potenzielle Verdunstung [mm/Jahr]	648	658 – 686	658 – 720	664 – 805
Längste Trockenperiode [Länge/Jahr] (maximale Anzahl an Tagen mit N < 1mm)	21	19 – 23	20 – 24	20 – 26

3.3.2 Wind und Sturm

Ein Sturm wird als "Wind von großer Heftigkeit, nach der Beaufort-Skala der Stärke 9 bis 11 [...], der erhebliche Schäden und Zerstörungen anrichten kann" definiert (DWD 2020). Folgende Sturmklassen werden dabei gemäß DWD anhand ihrer Windstärke eingeteilt:

Sturm:	Beaufort 9	(75 bis 88 km/h)
Schwerer Sturm:	Beaufort 10	(89 bis 102 km/h)
Orkanartiger Sturm:	Beaufort 11	(103 bis 117 km/h)
Orkan:	Beaufort 12	(> 117 km/h)

Genau wie Starkniederschläge gehören Stürme zu den seltenen Ereignissen, sodass sie nur bedingt statistisch auswertbar sind. Hinzu kommt, dass die regionalen Klimamodelle teilweise nicht in der Lage sind, Böen korrekt zu reproduzieren und daher Sturmereignisse oftmals nur unzureichend abbilden. Es ist jedoch anzunehmen, dass sich in einer wärmeren Atmosphäre aufgrund von mehr verfügbarer latenter Wärme, die beim Phasenübergang von Wasserdampf zu Flüssigwasser frei wird, potenziell stärkere Stürme ausbilden können (Pinto et al. 2009, Fink et al. 2012, Pinto und Ryers 2017). Dies hätte eine Zunahme der Sturmaktivität über Westeuropa zur Folge, wobei noch nicht eindeutig geklärt werden konnte, ob die Häufigkeit der Sturmereignisse zunimmt oder ob bei gleichbleibender Häufigkeit die Intensität steigt, also die Stärke der auftretenden Windgeschwindigkeiten (Pinto et al. 2009, Donat et al. 2010, McDonald 2011, Pinto und Ryers 2017).

Die Analyse zur Häufigkeit von Sturmereignissen ergab für den Raum Garzweiler in beiden Klimaszenarien keinen eindeutigen Trend bis zum Jahr 2100 (weder Zu- noch Abnahmen; ohne Abbildung). Dementsprechend weist kaum ein Modell des Ensembles signifikante Trends auf, sodass sich keine validen Aussagen zur zukünftigen Entwicklung der Auftrittshäufigkeit von Stürmen ableiten lassen.

4. Methodik der Modellrechnung

4.1 Das Mesoskalenmodell FITNAH

Allgemeines: Neben globalen Klimamodellen und regionalen Wettervorhersagemodellen, wie sie zum Beispiel vom Deutschen Wetterdienst für die tägliche Wettervorhersage routinemäßig eingesetzt werden, nehmen kleinräumige Modellanwendungen für umweltmeteorologische Zusammenhänge im Rahmen von stadtund landschaftsplanerischen Fragestellungen einen immer breiteren Raum ein. Die hierfür eingesetzten meso- (und) mikroskaligen Modelle erweitern das Inventar meteorologischer Werkzeuge zur Berechnung atmosphärischer Zustände und Prozesse.

Der Großteil praxisnaher umweltmeteorologischer Fragestellungen behandelt einen Raum von der Grössenordnung einer Stadt oder einer Region. Die bestimmenden Skalen für die hierfür relevanten meteorologischen Phänomene haben eine räumliche Erstreckung von Metern bis hin zu einigen Kilometern und eine
Zeitdauer von Minuten bis hin zu Stunden. Unter Verwendung des üblichen Einteilungsschemas meteorologischer Phänomene müssen diese in die Mikro- und Mesoskala eingeordnet werden. Beispiele für solche mesoskaligen Phänomene sind der Einfluss orographischer Hindernisse auf den Wind wie Kanalisierung und Umströmungseffekte, Land-See-Winde, Flurwinde oder auch Düseneffekte in Straßen, sowie das Phänomen der
urbanen Wärmeinsel.

Obwohl die allgemeine Struktur und die physikalischen Ursachen dieser lokalklimatischen Phänomene im Allgemeinen bekannt sind, gibt es nach wie vor noch offene Fragen hinsichtlich der räumlichen Übertragung auf andere Standorte oder der Sensitivität bezüglich der Wechselwirkungen einzelner Strömungssysteme untereinander. Ein Grund hierfür sind die relativ kleinen und kurzen Skalen der mesoskaligen Phänomene und deren unterschiedlichem Erscheinungsbild in komplexem Gelände, was es schwierig macht, mit Hilfe einer beschränkten Anzahl von Beobachtungen eine umfassende Charakterisierung zu erhalten. Mit Hilfe ergänzender Modelluntersuchungen kann dieser Nachteil überwunden werden.

Beginnend mit einem Schwerpunktprogramm der Deutschen Forschungsgemeinschaft (DFG 1988) wurden gerade in Deutschland eine Reihe mesoskaliger Modelle konzipiert und realisiert. Der heutige Entwicklungsstand dieser Modelle ist extrem hoch und zusammen mit den über die letzten Dekaden gewonnenen Erfahrungen im Umgang mit diesen Modellen steht neben Messungen vor Ort und Windkanalstudien ein weiteres leistungsfähiges und universell einsetzbares Werkzeug zur Bearbeitung umweltmeteorologischer Fragestellungen in kleinen, stadt- und landschaftsplanerisch relevanten Landschaftsausschnitten zur Verfügung.

Grundlagen mesoskaliger Modelle: Die Verteilung der lokalklimatisch relevanten Größen wie Wind und Temperatur können mit Hilfe von Messungen ermittelt werden. Aufgrund der großen räumlichen und zeitlichen Variation der meteorologischen Felder im Bereich einer komplexen Umgebung sind Messungen allerdings immer nur punktuell repräsentativ und eine Übertragung in benachbarte Räume selten möglich. Mesoskalige Modelle wie FITNAH können zu entscheidenden Verbesserungen dieser Nachteile herangezogen werden, indem sie physikalisch fundiert die räumlichen und/oder zeitlichen Lücken zwischen den Messungen schließen, weitere meteorologische Größen berechnen, die nicht gemessen wurden und Wind- und Temperaturfelder in ihrer raumfüllenden Struktur ermitteln. Die Modellrechnungen bieten darüber hinaus den großen Vorteil, dass Planungsvarianten und Ausgleichsmaßnahmen in ihrer Wirkung und Effizienz studiert werden können und auf diese Art und Weise optimierte Lösungen gefunden werden können.

Grundgleichungen: Für jede meteorologische Variable wird eine physikalisch fundierte mathematische Berechnungsvorschrift aufgestellt. Alle mesoskaligen Modelle basieren daher, wie Wettervorhersage- und Klimamodelle auch, auf einem Satz sehr ähnlicher Bilanz- und Erhaltungsgleichungen. Das Grundgerüst besteht aus den Gleichungen für die Impulserhaltung (Navier-Stokes Bewegungsgleichung), der Massenerhaltung (Kontinuitätsgleichung) und der Energieerhaltung (1. Hauptsatz der Thermodynamik).

Je nach Problemstellung und gewünschter Anwendung kann dieses Grundgerüst noch erweitert werden, um z.B. die Effekte von Niederschlag auf die Verteilung der stadtklimatologisch wichtigen Größen zu berücksichtigen. In diesem Falle müssen weitere Bilanzgleichungen für Wolkenwasser, Regenwasser und feste Niederschlagspartikel gelöst werden. Die Lösung des Gleichungssystems erfolgt in einem numerischen Raster. Die Rasterweite muss dabei so fein gewählt werden, dass die lokalklimatischen Besonderheiten des Untersuchungsraumes vom mesoskaligen Modell erfasst werden können. Je feiner das Raster gewählt wird, umso mehr Details und Strukturen werden aufgelöst (Abb. 11).

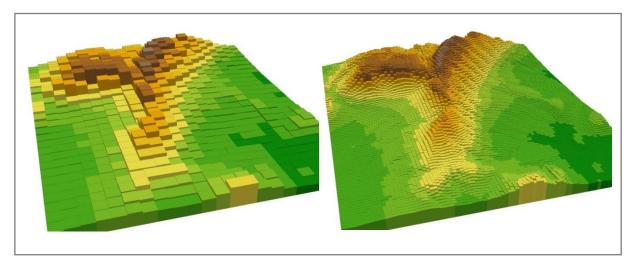


Abb. 11: Unterschiedliche Rasterweiten (links: 500 m x 500 m; rechts: 125 m x 125 m) bei einem digitalem Geländehöhenmodell

Allerdings steigen mit feiner werdender Rasterweite die Anforderungen an Rechenzeit und an die benötigten Eingangsdaten. Hier muss ein Kompromiss zwischen Notwendigkeit und Machbarkeit gefunden werden. In der vorliegenden Untersuchung beträgt die für die Modellierung mit FITNAH verwendete räumliche Maschenweite nur Δx 25 m, ist damit also relativ feingliedrig. Bei allen Modellrechnungen ist die *vertikale*

Gitterweite nicht äquidistant. In der bodennahen Atmosphäre sind die Rechenflächen besonders dicht angeordnet, um die starke Variation der meteorologischen Größen realistisch zu erfassen. So liegen die untersten Rechenflächen in Höhen von 5, 10, 15, 20, 30, 40, 50 und 70 m. Nach oben hin wird der Abstand Δz immer größer und die Modellobergrenze liegt in einer Höhe von 3000 m über Grund. In dieser Höhe wird angenommen, dass die am Erdboden durch Orographie und Landnutzung verursachten Störungen abgeklungen sind, also keine Auswirkungen mehr haben. Die Auswertungen der FITNAH-Modellierung beziehen sich auf das bodennahe Niveau der Modellrechnung (2 m über Grund = Aufenthaltsbereich der Menschen).

Eingangsdaten: Bei einem numerischen Modell wie FITNAH muss zur Festlegung und Bearbeitung einer Aufgabenstellung eine Reihe von Eingangsdaten zur Verfügung stehen (Abb. 12). Diese müssen zum einen die Landschaft charakterisieren, für welche die lokalklimatische Studie durchgeführt werden soll, und zum anderen auch die größerskaligen meteorologischen Rahmenbedingungen wie Wetterlage oder Klimaszenario definieren.

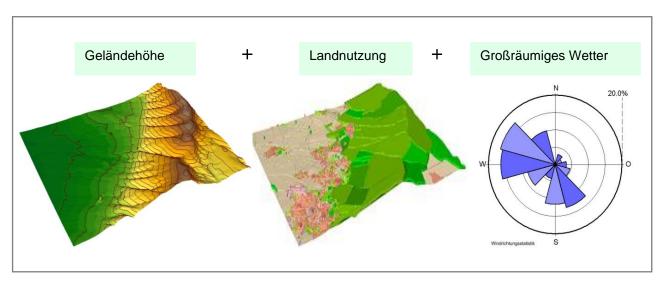


Abb. 12: Eingangsdaten für die Modellrechnung.

Alle Eingangsdaten sind jeweils als repräsentativer Wert für eine Rasterzelle aufzubereiten

- Geländedaten (orografische Eingangsparameter): Geländehöhe und daraus ableitbar Neigung und Orientierung)
- Nutzungsdaten (Verteilung der Landnutzung)
 - Bei urbanen Räumen: z.B. Gebäudehöhe, Überbauungsgrad, anthropogene Abwärme, Albedo, etc.
 - Bei Bewuchs: z.B. Bestandshöhe, Bestandsdichte, Blattflächenverteilung, etc.
- Wetter-/Klimadaten (z.B. großräumige Anströmungsrichtung und -geschwindigkeit, Luftmassencharakteristiken wie Temperatur und Feuchte).

4.2 Eingangsdaten: Geländehöhe und Nutzungsstruktur

Nutzungsstruktur und Geländehöhe sind wichtige Eingangsdaten für die Klimamodellierung, da über die Oberflächengestalt, die Höhe der jeweiligen Nutzungsstrukturen sowie deren Versiegelungsgrad das Strömungs- und Temperaturfeld entscheidend beeinflusst wird. Die dafür erforderlichen planspezifischen Geodaten wurden vom Auftraggeber zur Verfügung gestellt (RWE POWER 2023). Diese Unterlagen beinhalten digitale Geländemodelle des aktuellen Tagebaustands und der geplanten Wiedernutzbarmachung mit Darstellung des Tagebausees aus den bisherigen Genehmigungen/Zulassungen und aus der aufgrund der politischen Verständigung zwischen Bund, Land NRW und RWE vom 04.10.2022 angepassten Tagebauplanung. Das gesamte Untersuchungsgebiet hat bei einer Abmessung von ca. 11,2 x 18,3 km eine Fläche von insgesamt 216 km². Die Festlegung des Untersuchungsgebiets erfolgt entsprechend der zu erwartenden klimatischen Auswirkungen der Planvarianten. Die Einschätzung beruht dabei auf Erfahrungswerten bisheriger Klimasimulationen. Die Modellierung der meteorologischen Parameter erfolgte mit einer Zellengröße von 25 m.

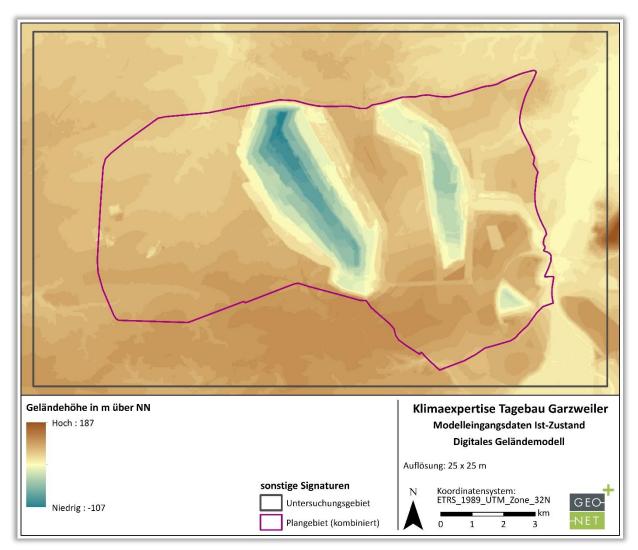


Abb. 13: Digitales Geländemodell des Ist-Zustandes für das Untersuchungsgebiet Tagebausee Garzweiler.

Zur Aufbereitung der orographischen Eingangsparameter für die Klimaanalyse konnte auf ein digitales Geländehöhenmodell mit einer Auflösung von 5 m (Landesbetrieb Information und Technik Nordrhein-Westfalen 2022) zurückgegriffen werden. Dieses wurde anhand von durch den Auftraggeber bereitgestellten Geländehöhenmodellen angepasst. Die Reliefsituationen des Ist-Zustandes sowie der beiden Tagebauseevarianten

sind in den Abbildungen Abb. 13 bisAbb. 15 dargestellt. Für die Seehöhe nach Abschluss der Seebefüllung wurde ein Zielwasserspiegel von + 66 m NHN festgelegt. Wesentliche Unterschiede zwischen den beiden Planvarianten stellen neben der Verschiebung und abweichenden Form des Tagebausees insbesondere das abgewandelte Relief östlich der Tagebauseevarianten (z.B. Anhöhe nordöstlich Variante B), die in Variante B verfüllte Kiesgrube im Südosten sowie die erhaltene Eintiefung der derzeitigen technischen Anlagen des Tagebaugeländes.

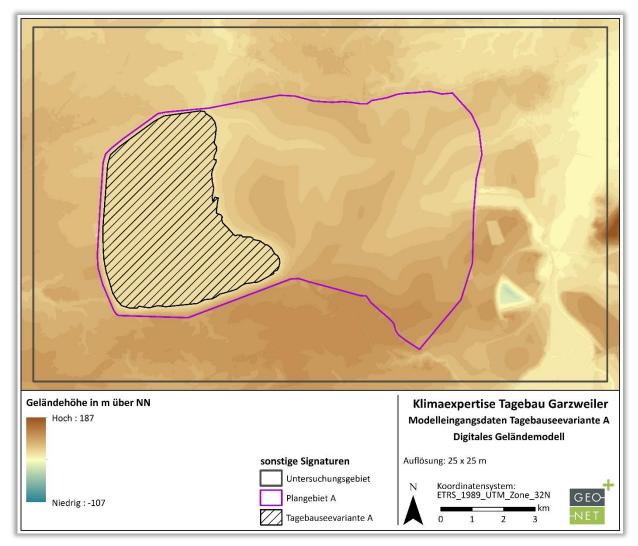


Abb. 14: Digitales Geländemodell der Tagebauseevariante B für das Untersuchungsgebiet Tagebausee Garzweiler.

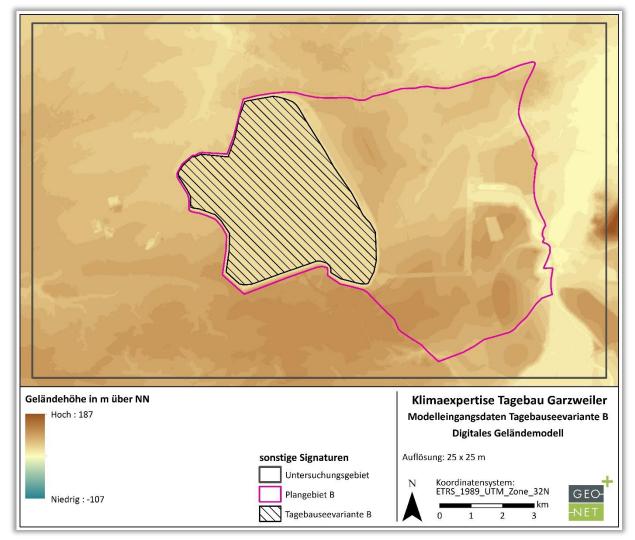


Abb. 15: Digitales Geländemodell der Tagebauseevariante B für das Untersuchungsgebiet Tagebausee Garzweiler.

Neben der Geländehöhe ist die Nutzung eine wichtige Einflussgröße einer Klimamodellierung. Als Grundlage für die Aufbereitung der Nutzungsstrukturen wurden ALKIS-Daten (LANDESBETRIEB INFORMATION UND TECHNIK NORDRHEIN-WESTFALEN 2021) sowie Planzeichnungen des Auftraggebers verwendet (RWE POWER 1995 und 2023). Die Angaben zur Nutzungsklassifikation sind für jede ins Modell eingehende Rasterzelle, wenn nötig auf Basis von Luftbildern aus dem Jahr 2022 individuell angepasst worden.

Da die vorliegende Rasterauflösung Einzelgebäude nicht auflöst, was hinsichtlich der Aufgabenstellung aber auch nicht erforderlich ist, sind den einzelnen Flächen mittlere, nutzungsklassifizierte Strukturhöhen und Oberflächenversiegelungsgrade zugewiesen worden. Diese basieren auf zum einen auf empirisch gewonnenen Untersuchungsergebnissen in verschiedenen deutschen Städten (u.a. MOSIMANN et al. 1999) und wurden zum anderen hinsichtlich der Strukturhöhen anhand der Differenz aus Gelände- Oberflächenmodell präzisiert.

Tabelle 3: Nutzungskategorien im Untersuchungsgebiet

Nutz-ID	Flächentyp	Beschreibung	Mittlerer Versie- gelungsgrad (%)	Mittlere Struktur- höhe (m)
2	Block- und Blockrandbebauung	Vergleichsweise dicht bebaute Siedlungsfläche. Geprägt durch vierbis sechsgeschossige Mehrfamilienhäuser mit mehr oder weniger stark versiegelten Innenhofbereichen.	78	individuell (mind. 1 m)
3	Industriefläche	Gewerbliche Bauflächen. Ähnlich hoher Versiegelungsgrad wie die Zentrumsbebauung, meist geringeres Bauvolumen.	87	individuell (mind. 1 m)
4	Zeilen- und Hochhausbebauung	Zeilenbebauung, halboffene Blockrandbebauung, Hochhäuser. Typisch ist der durch unbebaute Abstandsflächen bedingte relativ hohe Freiflächenanteil.	55	individuell (mind. 1 m)
5	Einzel- und Reihenhausbebauung	Siedlungsflächen mit relativ geringem Überbauungsgrad im Übergang zwischen relativ dichter Reihenhausbebauung und baulich geprägter Grünfläche.	41	individuell (mind. 1 m)
6	Straße	Ebenerdig versiegelte Fläche des innerörtlichen Straßenraums.	95	0
7	Gleis	Schienenverkehrsfläche mit geringer Strukturhöhe.	25	0,5
8	Baulich beeinflusste Grünfläche	Vegetationsgeprägte Flächen mit einem erhöhten Anteil an versiegelter Fläche (Zuwegungen) und/oder Bebauung.	25	individuell (mind. 1 m)
9	Freiland, Grünfläche	Vornehmlich landwirtschaftlich genutzte Flächen wie Wiesen, Weiden und Äcker. Innerstädtisch handelt es sich meist um Rasenflächen mit geringem Gehölzanteil.	5	1
10	Gehölz	Gehölzgeprägte Flächen wie städtische Parkareale, Obstbauflächen, Brachen, Straßenbegleitgrün.	5	individuell (mind. 2 m)
13	Wald	Waldgeprägte Flächen, Mischbestand.	5	individuell (mind. 2 m)
14	Wasserfläche	Still- und Fließgewässer.	0	0
18	Gewerbefläche	Gewerbliche Bauflächen. Ähnlich hoher Versiegelungsgrad wie die Zentrumsbebauung, meist geringeres Bauvolumen. Geringerer anthropogener Wärmestrom als Industrieflächen.	87	individuell (mind. 1 m)

Um den speziellen Anforderungen der angeforderten Modellanalyse gerecht werden zu können, wurde bei der Aufbereitung der Nutzungsstrukturen ein vereinfachter, 12-klassiger Nutzungsschlüssel verwendet. Der Schlüssel wurde vor allem auch dahingehend definiert, eine problemlose Zuweisung des mittleren Versiegelungsgrades auf Basis der in den Eingangs- und Literaturdaten vorkommenden Nutzungsklassifizierungen möglich zu machen. Die angewandten Versiegelungs- und Strukturhöhen je Nutzungskategorie sind in Tab. 3 aufgelistet. Um eine gewisse Grundoberflächenrauigkeit anzunehmen, wurde bei einem Großteil der Landnutzungsklassen eine Mindeststrukturhöhe von 1 bzw. 2 m angenommen. Darüber hinaus gehende Werte wurden wie zuvor beschrieben mit Hilfe des digitalen Gelände- und Oberflächenmodells berechnet. Da es für offene Tagebauareale keine erprobte Nutzungskategorie gibt, wurde für den Bereich des offenen Tagebaus die Klasse "Freiland, Grünfläche" mit einem zum Normalfall herabgesetzten Vegetationsanteil verwendet.

Die Abbildungen 16 und 17 zeigen die aufbereitete Landnutzungsklassifizierung beider Modellszenarien. Beide Szenarien unterscheiden sich dabei nicht nur in der Lage des geplanten Tagebausees, sondern teilweise auch in der Flächenkulisse östlich der Tagebauseen. Insbesondere die angenommene gewerbliche Nutzung im Bereich der derzeitigen technischen Tagebauanlagen (Tagesanlagen, Kohlebunker) sowie ein Teil der Wald- bzw. Gehölzstrukturen wie beispielsweise der deutlich schmalere Gehölzsaum bei der Tagebauseevariante B stellen wesentliche Unterschiede dar, welche bei der Analyse der Modellergebnisse berücksichtigt werden müssen.

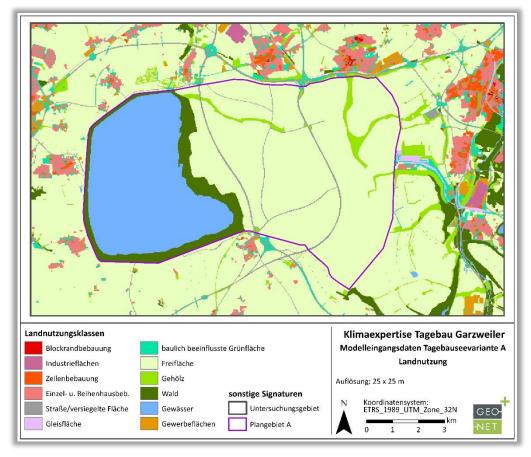


Abb. 16: Aufbereitete Landnutzung des Modellszenarios Tagebauseevariante A.

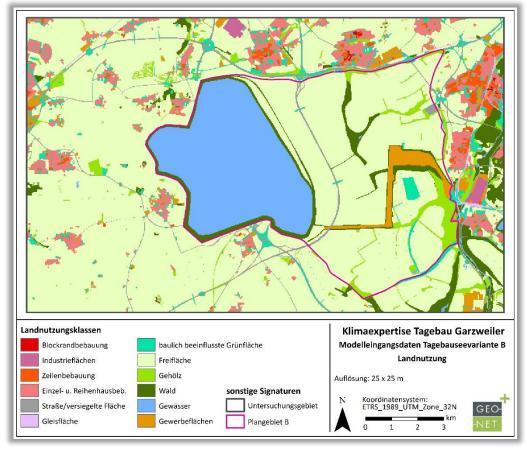


Abb. 17: Aufbereitete Landnutzung des Modellszenarios Tagebauseevariante B.

4.3 Modellunsicherheiten

Die numerische Klimamodellierung ist anderen analytischen Ansätze der Fachdisziplin (Messungen, klimatopbasierte GIS-Analysen) aufgrund ihres flächendeckenden, das Prozessgeschehen abbildenden Outputs überlegen. Dennoch sind Modellanwendungen mit Unsicherheiten verbunden, auf die im Sinne eines umfassenden, auf Transparenz und Akzeptanz ausgerichteten Analyseansatzes hingewiesen werden muss. Die Unsicherheiten lassen sich unter den folgenden Überschriften subsummieren:

- Unsicherheiten im Modell ("interne Unsicherheiten")
- Unsicherheiten in den Eingangsdaten ("externe Unsicherheiten")

Zunächst einmal sind Modelle per Definition unvollständige Abbilder der Wirklichkeit (Stachowiak 1973). Sie erheben damit keinen Anspruch, das zu modellierende System allumfassend abzubilden, sondern wollen dieses lediglich hinreichend gut repräsentieren. Den Maßstab zur Gütebeurteilung bildet dabei das anvisierte Einsatzgebiet des Modells. Dieser Ansatz gilt für (Stadt-)Klimamodelle aufgrund der Komplexität der in physikalischen Gleichungen abzubildenden Atmosphäre in besonderem Maße. Folglich ist auch das hier eingesetzte Modell FITNAH-3D nicht mit der Ambition verknüpft, restlos alle ablaufenden Prozesse bis ins letzte Detail abbilden zu wollen, sondern lediglich die, die zur Erfüllung der speziellen Aufgabe notwendig sind. Es erfüllt dabei die in der VDI-Richtlinie 3787 definierten Standards zur Windfeldmodellierung. Allerdings existieren auch Prozesse, deren Abbildung gemäß VDI-Richtlinien nicht zu gewährleisten sind, aus denen sich aber dennoch gewisse Unsicherheiten ergeben können. So wird FITNAH-3D dem Stand der Technik entsprechend beispielsweise im sog. RANS-Modus (Reynolds-Averaged Navier-Stokes equations) betrieben, bei dem Turbulenzen nicht explizit, sondern mithilfe von vereinfachenden Gleichungen abgebildet werden. Demgegenüber steht der Turbulenzen auflösende sog. LES-Modus (Large Eddy Simulation), der aber im Zusammenhang mit Stadtklimaanwendungen noch Gegenstand von F&E Vorhaben ist. Ein Nachweis für eine tatsächliche Verbesserung der Modellergebnisse steht somit noch aus und kann nach heutigem Erkenntnisstand am ehesten vom Modell PALM-4U erwartet werden, dass zeitnah mit BMBF Fördermitteln zu einem marktreifen Produkt reifen soll und an dessen Erprobung GEO-NET im Rahmen der Fördermaßnahme "Stadtklima im Wandel" intensiv beteiligt ist.

Zu den internen Unsicherheiten gehört darüber hinaus auch das sog. "Modellrauschen". Es beschreibt, in welchem Ausmaß die Ergebnisse zwischen mehreren Modellläufen mit demselben Antrieb bzw. denselben Randbedingungen über verschiedene räumliche und zeitliche Skalen variieren. Dieser Punkt ist insbesondere dann von Bedeutung, wenn die entsprechende Analyse auch Szenarienrechnungen enthält – also z.B. die Auswirkungen des zukünftig zu erwartenden Klimawandels, von Landnutzungsszenarien und/oder Maßnahmenszenarien abzubilden hat. Für das bodennahe Temperaturfeld in FITNAH-3D liegt das Modellrauschen bei +/- 0,1-0,2 K pro Rasterzelle und Zeitschnitt. Das ist eine sehr geringe Unsicherheit, die sich in der Planungshinweiskarte aufgrund der geostatistischen Aggregation auf größere Flächeneinheiten noch einmal verringert. Analog gilt das auch für die im Modell abgebildeten Parameter des Kaltlufthaushaltes. Bei der Kaltluftvolumenstromdichte liegt der Wert bei +/- 1-2%, bei der Kaltluftproduktionsrate besteht aufgrund ihres primär empirisch hergeleiteten Wertes keine Unsicherheit.

Insbesondere kleinräumig stellen die zur Verfügung stehenden bzw. mit vertretbarem Aufwand erzeugbaren Modelleingangsdaten die relevantere Unsicherheitsquelle dar. Die Unsicherheiten können sich dabei ergeben aus

- der Aktualität der Daten (bzw. Ihrer Obsoleszenz),
- ihrer Genauigkeit (bzw. Ungenauigkeit) bzw. ihres Informationsgehaltes sowie
- der Art ihrer Weiterverarbeitung zur Verwendbarkeit im Rahmen der Analyse

Dabei gilt grundsätzlich: Je aktueller die Daten, desto geringer sind die Unsicherheiten. Der Erhebungszeitraum sollte in diesem Zusammenhang nicht mehr als 2-3 Jahre in der Vergangenheit liegen. Diese Prämisse ist für die vorliegende Analyse erfüllt. Widersprüchliche und veraltete Daten konnten zudem anhand des Abgleichs mit dem Orthophoto zum Teil korrigiert bzw. aktualisiert werden, sie sind trotz Plausibilitätsprüfung jedoch nicht komplett auszuschließen. Entscheidend ist in diesem Zusammenhang das Bemühen, stets die besten zum jeweiligen Zeitpunkt verfügbaren Daten zu verwenden.

4.4 Betrachtete Wetterlagen

Sommerliche Hochdruckwetterlage

Die durchgeführte numerische Simulation mit FITNAH 3D legt für die Klimaparameter Lufttemperatur, Kaltluftvolumenstrom, bodennahe Windgeschwindigkeit und die Physiologisch äquivalente Temperatur eine
sommerliche Hochdruckwetterlage zugrunde. Eine solche autochthone ("eigenbürtige", von lokalen und regionalen Einflüssen dominierte und damit austauscharme) Wetterlage ist durch einen wolkenarmen Himmel
und maximal schwach überlagernde Winde mit herabgesetztem Luftaustausch in der bodennahen Luftschicht gekennzeichnet. So können die lokalklimatischen Besonderheiten eines Betrachtungsraums besonders gut in Erscheinung treten: Die unterschiedlichen nächtlichen Abkühlungsraten des städtischen bzw.
ländlichen Nutzungsmosaiks führen zur Ausbildung humanbioklimatischer Belastungs- und Entlastungsräume, zwischen denen es aufgrund der unterschiedlichen Lufttemperaturen zu Ausgleichsströmungen kommen kann. Für die Belastungsräume stellt diese Wetterlage ein "Worst-Case-Szenario" dar, da keine übergeordnete Luftströmung zur Reduktion der Belastung vorhanden ist (Abb. 18).

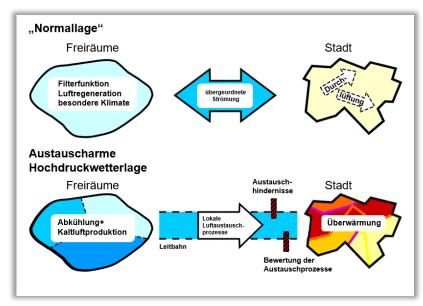


Abb. 18: Prinzipskizze zu Belastungs- und Entlastungsräumen in Abhängigkeit von der vorherrschenden Wetterlage am Beispiel Freiraum – Stadt.

Anhand der nahegelegenen DWD-Station Köln-Bonn wurde die langjährige Häufigkeit autochthoner Wetterlagen für den Raum Garzweiler bestimmt. So traten im langjährigen Mittel der letzten 50 Jahre 59,2 windschwache Strahlungsnächte pro Jahr auf, wobei saisonale Unterschiede mit einer höheren Anzahl im Sommerhalbjahr zu verzeichnen sind (Abb. 19). In den drei Sommermonaten Juni, Juli und August wurden im jährlichen Mittel rund 23 windschwache Strahlungsnächte beobachtet, was einem Anteil von 25 % entspricht – jede vierte Sommernacht steht folglich unter autochthonen Bedingungen.

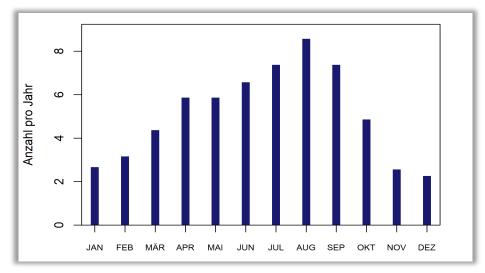


Abb. 19: Langjährige mittlere monatliche Anzahl an windschwachen Strahlungsnächten im Raum Garzweiler (59,2 pro Jahr) für den Zeitraum 1971 - 2020, basierend auf der nahegelegenen DWD-Station Köln-Bonn (DWD 2021).

Bei den hier durchgeführten numerischen Simulationen wurden die großräumigen synoptischen Rahmenbedingungen folgendermaßen festgelegt:

- Bedeckungsgrad 0/8,
- kein überlagernder geostrophischer Wind,
- Gewässertemperatur 20 °C
- relative Feuchte der Luftmasse 50 %.

In Abb. 20 sind schematisch die für die angenommene Wetterlage simulierten tageszeitlichen Veränderungen der Temperatur und Vertikalprofile der Windgeschwindigkeit zur Mittagszeit für die Landnutzungen Freiland, Stadt und Wald dargestellt. Beim Temperaturverlauf zeigt sich, dass sowohl Freiflächen als auch Bebauung ähnlich hohe Temperaturen zur Mittagszeit aufweisen können, die nächtliche Abkühlung der Siedlungsflächen hingegen deutlich geringer ist. Waldflächen nehmen eine mittlere Stellung ein, da die nächtliche Auskühlung durch das Kronendach gedämpft wird. Hinsichtlich der Windgeschwindigkeit wird der Einfluss von Bebauung und Vegetationsstrukturen im Vertikalprofil deutlich.

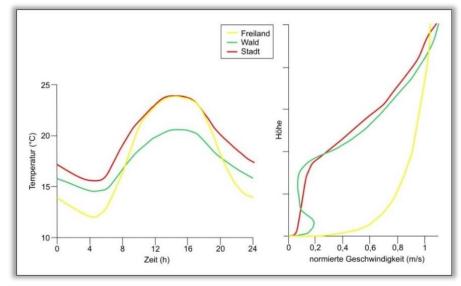


Abb. 20: Temperaturverlauf und Vertikalprofil der Windgeschwindigkeit mittags für verschiedene Landnutzungen.

Die Wärmebelastung, wie sie bei Hochdruckwetterlagen tagsüber auftritt, hängt ganz wesentlich von der jeweiligen Beschaffenheit des direkten lokalen Umfeldes ab. Veränderungen der Nutzungsintensität oder Grünausstattung weisen daher bei Tage eine räumlich nur sehr begrenzte Wirkung auf. Nächtliche Luftaustauschströmungen hingegen induzieren zwischen den sich unterschiedlich stark abkühlenden Flächen eine klimafunktionale Fernwirkung: Kalt- und Frischluft aus Grün- und Freiflächen trägt in der Nacht zum Abbau von thermischen und lufthygienischen Belastungen in den überwärmten Siedlungsflächen bei. Durch Nutzungsintensivierungen können solche Prozess- und Funktionszusammenhänge nachhaltig gestört werden. Aus diesem Grund werden die humanbioklimatischen Auswirkungen einer Planung auf ihr Umfeld beurteilt, indem die Nachtsituation einer austauscharmen, sommerlichen Hochdruckwetterlage untersucht wird. Da das Kaltluftprozessgeschehen in der zweiten Nachthälfte sein Maximum erreicht, beziehen sich die Auswertungen auf den Zeitpunkt 4 Uhr morgens.

Neben dem räumlichen Aspekt trägt ein weiterer Umstand zur besonderen Bedeutung der nächtlichen Wärmebelastung bei: Ausgewogene thermische Verhältnisse sind eine wesentliche Bedingung für einen erholsamen Schlaf. Da die klimatischen Verhältnisse der Wohnungen in der Nacht im Wesentlichen nur durch den Luftwechsel modifiziert werden können, ist die Temperatur der Außenluft der entscheidende Faktor bei der Bewertung der thermophysiologischen Belastung. Entsprechend spiegelt die Beurteilung des Humanbioklimas weniger die thermische Beanspruchung des Menschen im Freien wider als vielmehr die positive Beeinflussbarkeit des nächtlichen Innenraumklimas. Ebenso lassen sie die Untersuchungen für die Beurteilung der klimatischen Einflüsse des Vorhabens auf Tiere oder Pflanzen verwenden.

Frühjährliche Normalwetterlage

Hinsichtlich der Simulation der relativen Luftfeuchteverteilung im Untersuchungsraum wurde entgegen den anderen betrachteten Klimaparametern eine frühjährliche Normalwetterlage angenommen. Anhand dieses Parameters wird untersucht, in welchem Ausmaß und welcher räumlichen Ausprägung von einer veränderten relativen Luftfeuchtigkeit ausgegangen werden kann, welche beispielsweise zu Nebelbildung, Reifglätte (relevant für die umliegenden Verkehrsflächen) sowie verstärkten Pilzbefall (relevant für die umliegenden Ackerflächen) führen können. Das Abweichen von der sommerlichen Hochdruckwetterlage bei diesem Klimaparameter begründet sich darin, dass die Wahrscheinlichkeit für relative Luftfeuchtigkeiten nahe der 100%, was eine Voraussetzung für beispielsweise Nebelbildung oder Reifglätte darstellt, im Frühjahr und Herbst wesentlich höher ist. Der Herbst spielt in diesem Zusammenhang auch eine Rolle, da die Wetterverhältnisse in beiden Jahreszeiten relativ ähnlich sind und somit die Modellergebnisse auch ein Großteil des Jahres repräsentieren. Dagegen stellt die sommerlicher Hochdruckwetterlage einen Worst Case hinsichtlich der Wärmebelastung dar, welcher nur während einer relativ geringen Zeitspanne auftritt.

Um die klimatischen Rahmenbedingungen der frühjährlichen Normalwetterlage zu bestimmen, wurden Klimadaten der nahegelegenen DWD-Station Aachen in Bezug repräsentative Werte der relativen Luftfeuchtigkeit sowie der Hauptwindrichtung ausgewertet. Dabei ergab sich für die angenommene relative Luftfeuchtigkeit ein Wert von 80 % (vgl. Abb. 21) und hinsichtlich der Hauptwindrichtung ein Anstrom aus südwestlicher Richtung (vgl. Abb. 22).

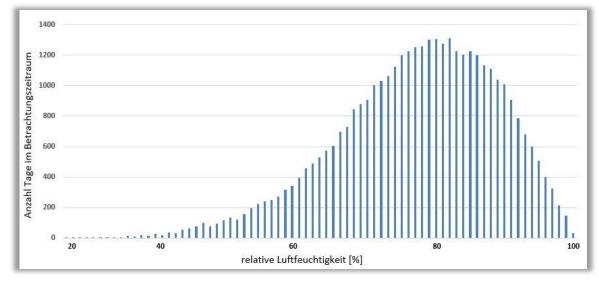


Abb. 21: Häufigkeitsverteilung der rel. Luftfeuchtigkeit nach Tagesmittelwerten für den Zeitraum 1891 bis 2011.

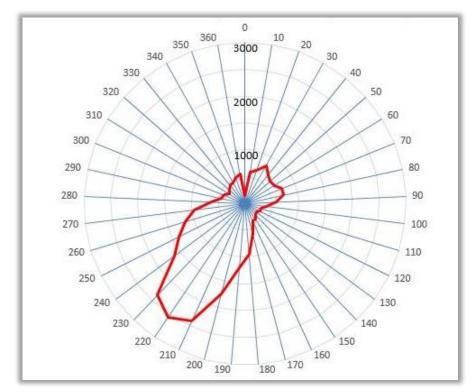


Abb. 22: Darstellung der Häufigkeitsverteilung der verschiedenen Windrichtungen für den Zeitraum 1975 bis 2011.

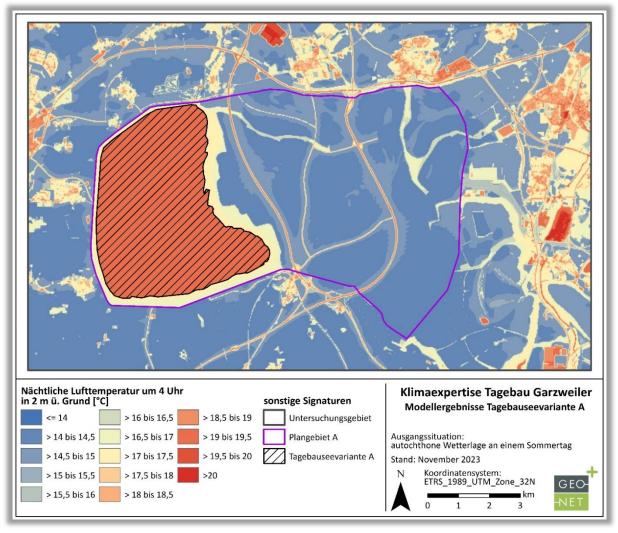
5. Ergebnisse

Zur vergleichenden Beurteilung der gegenwärtigen und der planbedingten, zukünftig zu erwartenden humanbioklimatischen Belastungen wurden Modellrechnungen für

- die zwei Planvarianten durchgeführt:
 - der im Jahr 1995 genehmigte Planungsstand des Tagebausees wird dabei im Folgenden als Variante A und
 - der aufgrund der politischen Verständigung zwischen Bund, Land NRW und RWE vom 04.10.2022 neue Planungsstand als Variante B bezeichnet.
- die Ist-Situation durchgeführt, (auch wenn Gegenstand des Verfahrens die Änderung des Vorhabens ist und nicht die Frage ob ein Tagebausee angelegt wird, im Anhang)

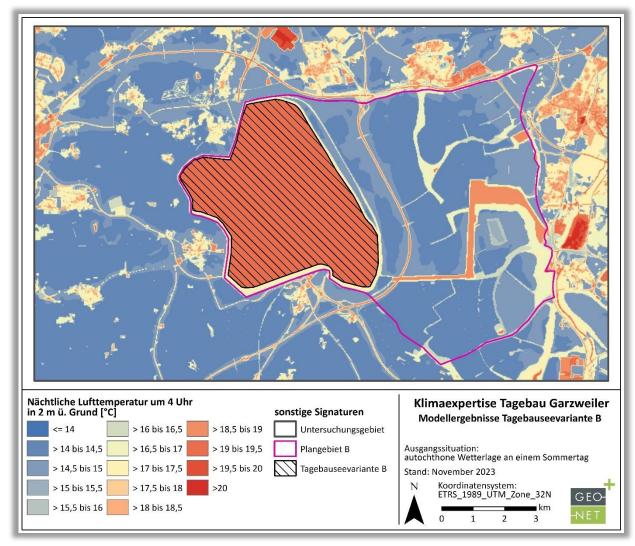
Die Ergebnisse der Klimasimulation repräsentieren die Nachtsituation um 4 Uhr morgens (Zeitpunkt der maximalen Abkühlung) bzw. Tagsituation um 14 Uhr (höchste Belastung). Bei den modellierten Parametern handelt es sich um die bodennahe Lufttemperatur (Tag- und Nachtsituation), das bodennahe Kaltluftströmungsfeld sowie den Kaltluftvolumenstrom (jeweils Nachtsituation) und die Physiologisch Äquivalente Temperatur (PET) als Maß für die Wärmebelastung am Tage. Des Weiteren wurde eine Klimasimulation hinsichtlich der räumlichen Verteilung der relativen Luftfeuchtigkeit während einer frühjährlichen Normalwetterlage durchgeführt. Die Ergebnisse repräsentieren dabei die Zeitpunkte der stärksten Abkühlung (7 Uhr kurz vor Sonnenaufgang) und höchsten Tagestemperatur (15 Uhr). Auf diese Weise können die Spanne der relativen Luftfeuchtigkeit sowie die unterschiedlichen Ausbreitungsmuster im Tagesverlauf dargestellt werden. Die Modellrechnungen erfolgten, wie oben beschrieben, ohne Berücksichtigung der Analyse zu den Klimawandelfolgen, um auf diese Weise die alleinige Auswirkung der Flächennutzungsänderung des Tagebaus spezifisch beurteilen zu können. Aus den in Kapitel 2 beschriebenen Analyseergebnissen zum Klimawandel lassen sich darüber hinaus allerdings Aussagen ableiten, welche zusätzlichen Auswirkungen sich durch den Klimawandel im Nachgang der vollständigen Befüllung ("nachlaufende Befüllung" und "stationärer Endzustand") unter verschiedenen Annahmen entwickeln könnten.

In der folgenden Ergebnisdarstellung werden die bioklimatischen Auswirkungen der beiden Tagebauseevarianten anhand von Modellergebniskarten gegenübergestellt. Die Modellergebnisse zum Ist-Zustand der beschriebenen Klimaparameter befinden sich in Anhang 1 bis 5.



5.1. MODELLERGEBNISSE

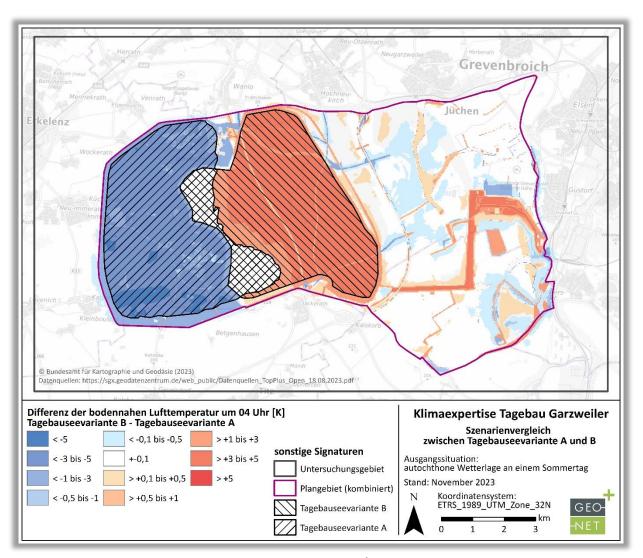
5.1.1 Nachtsituation: Bodennahe Lufttemperatur (4 Uhr)


In der Nacht steht weniger der Aufenthalt im Freien, sondern die Möglichkeit eines erholsamen Schlafes im Innenraum im Vordergrund. Nach VDI-Richtlinie 3787, Blatt 2 besteht ein Zusammenhang zwischen Außenund Innenraumluft, sodass die Temperatur der Außenluft die entscheidende Größe für die Beurteilung der Nachtsituation darstellt (VDI 2008). Als optimale Schlaftemperaturen werden gemeinhin 16 bis 18 °C angegeben (UBA 2016), während sogenannte Tropennächte mit einer Minimumtemperatur ≥ 20 °C als besonders belastend gelten.

Je nach meteorologischen Verhältnissen, Lage bzw. Höhe des Standorts und den Boden- bzw. Oberflächeneigenschaften kann die nächtliche Abkühlung merkliche Unterschiede aufweisen, was bei Betrachtung des gesamten Untersuchungsgebiets auch für das Umfeld des Tagebaus Garzweiler mit seinen verschiedenen Flächennutzungen deutlich wird. So umfasst die nächtliche bodennahe Lufttemperatur bei Minimalwerten von ca. 13 °C über siedlungsfernen Freiflächen und Maximalwerten bis etwa 20,5 °C in hochversiegelten Siedlungslagen eine Spannweite von 7,7 °C. Die mittlere Temperatur des Untersuchungsraums liegt unter den angenommenen meteorologischen Rahmenbedingungen bei 15,2 °C.

Karte 1: Bodennahe nächtliche Lufttemperatur im Referenzszenario (Variante A) während einer autochthonen Wetterlage.

Karte 2: Bodennahe nächtliche Lufttemperatur im Planungsszenario (Variante B) während einer autochthonen Wetterlage.


Die Karten 1 und 2 zeigen die jeweilige räumliche Verteilung der modellierten nächtlichen Lufttemperatur in 2 m über Grund während einer sommerlichen autochthonen Wetterlage. Zusammenfassend zeigt sich für die Planvarianten dabei folgendes Bild:

- Das Temperaturniveau reicht in beiden Planvarianten von 13 bis 15 C° über Freiflächen bis hin zu über 20 C° im Bereich dicht versiegelter Industrieflächen sowie dem Kraftwerk Frimmersdorf.
- Die Siedlungsflächen weisen je nach Bebauungs- bzw. Versieglungsgrad eine Lufttemperatur von 17 (Dorf- und Stadtrandlagen) bis knapp unter 20 °C (Stadt-/Ortskerne und Gewerbegebiete) auf.
- Die im Szenario der Tagebauseevariante B erhalten bleibenden Ortschaften westlich des Tagebausees (z.B. Holzweiler und Keyenberg) weisen mit rund 17 bis 18 °C eine vergleichbare bioklimatische Situation auf wie Ortschaften ähnlicher Größe im näheren Umfeld (z.B. Kückhoven und Katzem).
- Gebiete mit Wald- bzw. Gehölzbestand weisen bodennahe Lufttemperaturen von rund 16 bis 17,5 °C auf. Im Vergleich zu den offenen Grünflächen verringert hier die abschirmende Wirkung der Baumkronen eine stärkere nächtliche Abkühlung.
- Die Lufttemperatur im Bereich der jeweiligen Tagebauseefläche beträgt durchschnittlich ca.
 19,3 °C.

- Die außerörtlichen Verkehrsflächen weisen Temperaturen von 17 bis 18 °C (Bundes- und Landstraßen) bzw. 18 bis 19 °C (Autobahnen) auf.
- Neben der unterschiedlichen Lage der Tagebauseefläche stellt die angenommene gewerbliche Nutzung im Bereich der derzeitigen technischen Tagebauanlagen (Tagesanlagen und Kohlebunker) die wesentlichste nächtliche Temperaturveränderung dar.

Die Karte 3 zeigt die Differenz der bodennahen nächtlichen Lufttemperatur beider Tagebauseevarianten. Die orange bis rote Farbgebung weist Flächen mit einer Temperaturerhöhung der Variante B gegenüber der Variante A aus. Die abgestuften Blautöne signalisieren dagegen eine Reduzierung der Lufttemperatur für die Planvariante B.

Karte 3: Abweichung der bodennahen nächtlichen Lufttemperatur¹ zwischen Tagebauseevariante A und B.

GEO-NET 35

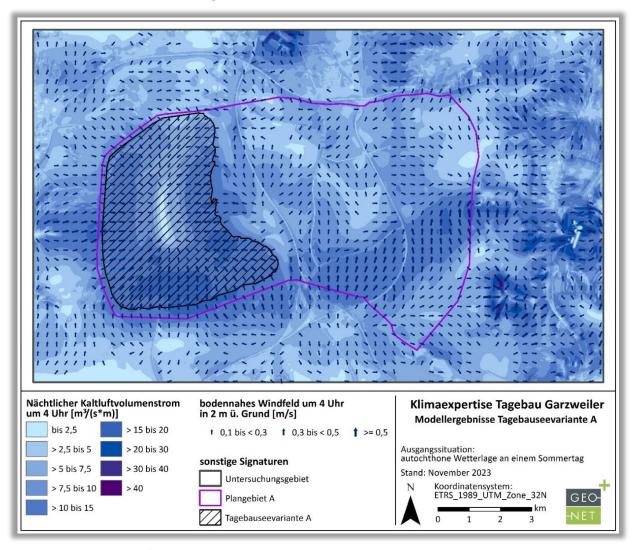
-

¹ Differenzen der Lufttemperatur werden in K (Kelvin) statt $^{\circ}$ C (Grad Celsius) angegeben. Die jeweiligen Intervalle der Temperaturdifferenz sind dabei identisch (Temperaturerhöhung von 15 auf 16 $^{\circ}$ C = +1 K)

Aus der räumlichen Ausprägung der Temperaturabweichungen lassen sich folgende Aussagen ableiten:

- Es treten Temperaturunterschiede von bis +5,2 K bis -5,3 K auf
- Nennenswerte Abweichungen der Lufttemperatur sind weitestgehend auf die überplanten Gebiete (kombiniertes Plangebiet) begrenzt.
- Die größte Temperaturdifferenz tritt erwartungsgemäß in den Bereichen der geplanten Tagebauseeflächen (schraffierte Flächen) auf. Grund hierfür ist die grundlegende Landnutzungsänderung von überwiegendem Freiland zu Gewässer.
- Aufgrund der gleichen Landnutzungsklasse weist der Überschneidungsbereich (Kreuzschraffur) beider Tagebauseevarianten kaum Temperaturunterschiede auf (< 0,1 K).
- Die Änderungen der Landnutzung wie z.B. die angenommene Gewerbebebauung und die abweichenden Gehölz- bzw. Waldstrukturen sowie das abweichende Geländehöhenmodell beider Planvarianten bewirken für den überplanten Bereich des Untersuchungsgebiets (ohne Tagebauseefläche) variierende Temperaturdifferenzen von bis zu -3,1 bzw. +4,2 K. Diese Differenzen haben dabei allerdings nur einen sehr lokalen Effekt und wirken sich kaum über die Grenzen des (kombinierten) Plangebietes aus.
- Auswirkungen hinsichtlich der Lufttemperatur über das Plangebiet hinaus sind im nennenswerten Ausmaß (> 0,1 K) nur im Nahbereich (bis in ca. 300 m Entfernung) der Gewässerflächen inklusive des umliegenden Gehölzsaums sowie kleinräumig östlich des Plangebietes zu erwarten. Die Auswirkungen sind dabei allerdings als geringfügig einzustufen und sind zudem am östlichen Plangebietsrand nicht auf die neue Seevariante, sondern auf die abweichende Landnutzung sowie die in Variante B aufgefüllte Kiesgrube im Südosten zurückzuführen.

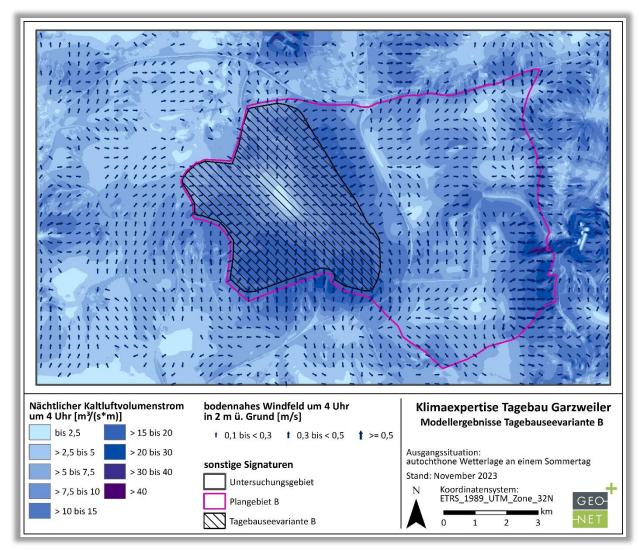
Einfluss des Klimawandels


Wie einleitend erwähnt wurden die Modellrechnungen ohne eine Berücksichtigung der durch den Klimawandel zu erwartenden Entwicklungen durchgeführt. Auf diese Weise können die Auswirkungen, welche durch die neue Planung des Tagebausees und dessen Umgebung entstehen, explizit betrachtet werden. Zudem ist grundsätzlich anzunehmen, dass trotz durch den Klimawandel steigender Lufttemperaturen die klimaökologischen Auswirkungen bei ansonsten gleichbleibenden Rahmenbedingungen weitestgehend konstant bleiben. So führt der Klimawandel zu einer flächendeckenden Erwärmung, ohne dass die Temperaturunterschiede zwischen den einzelnen Landnutzungsklassen im relevanten Ausmaß zu- oder abnehmen. Nur Letzteres würde aus klimaökologischer Sicht zu einer modifizierten Klimafunktion der Tagebauseevarianten führen. Dies könnte beispielsweise durch einen wesentlich veränderten externen Wasserzufluss (zusätzliche Beeinflussung der Seewassertemperatur), eine veränderte Seefläche oder eine wesentlich abweichende Uferrandgestaltung bewirkt werden.

5.1.2 Nachtsituation: Kaltluftvolumenstrom (4 Uhr)

Da die potenzielle Ausgleichsleistung einer grünbestimmten Fläche nicht allein aus der Geschwindigkeit der bodennahen Kaltluftströmung resultiert, sondern zu einem wesentlichen Teil durch ihre Mächtigkeit mitbestimmt wird (d.h. durch die Höhe der Kaltluftschicht), wird zur Bewertung der Grünflächen auch der sogenannte Kaltluftvolumenstrom herangezogen. Beschrieben wird damit diejenige Menge an Kaltluft in der Einheit m³, die in jeder Sekunde über den jeweiligen Querschnitt einer Fläche fließt¹.

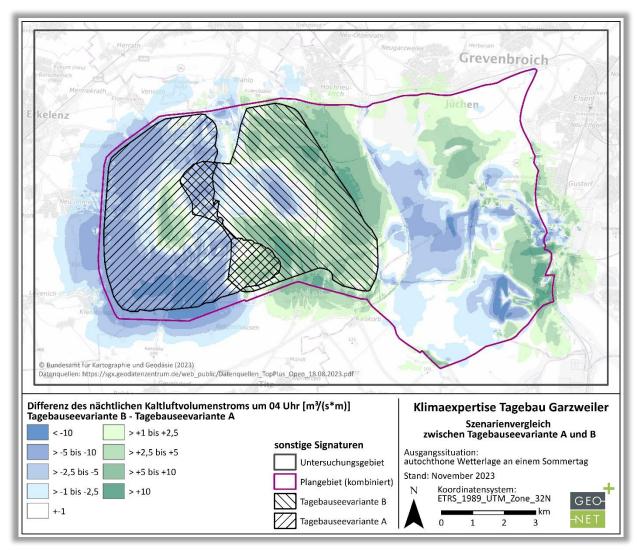
Wie auch die weiteren Klimaparameter ist der Kaltluftvolumenstrom eine Größe, die während der Nachtstunden in ihrer Stärke und Richtung veränderlich ist. Die sich im Verlauf der Nacht einstellenden Strömungsgeschwindigkeiten hängen im Wesentlichen von der Temperaturdifferenz der Kaltluft gegenüber der Umgebungsluft, der Hangneigung und der Oberflächenrauigkeit ab. Die Mächtigkeit der Kaltluftschicht nimmt im Verlaufe einer Nacht in der Regel zu und ist, genau wie die Luftaustauschprozesse allgemein, meist erst in der zweiten Nachthälfte vollständig entwickelt.



Karte 4: Nächtlicher Kaltluftvolumenstrom im Plangebiet der Planvariante A während einer autochthonen Wetterlage.

GEO-NET 37

¹ In dieser Untersuchung wird der Kaltluftvolumenstrom für einen Querschnitt von 1 m Breite ausgegeben (Einheit: m³ / (s*m)). Mit dieser Einheit kann der Kaltluftvolumenstrom auch als Kaltluftvolumenstromdichte bezeichnet werden.



Karte 5: Nächtlicher Kaltluftvolumenstrom im Plangebiet der Planvariante B während einer autochthonen Wetterlage.

Die Karten 4 und 5 zeigen die jeweilige räumliche Verteilung des modellierten nächtlichen Kaltluftvolumenstroms (Blautöne) sowie das bodennahe Windfeld (Pfeile) während einer sommerlichen autochthonen Wetterlage. Zusammenfassend zeigt sich für die Planvarianten dabei folgendes Bild:

- Ein hoher Kaltluftvolumenstrom ist in beiden Planvarianten im Bereich starker Reliefenergie (Hangabwinde) sowie im Nahbereich überwärmter Flächen wie Siedlungen, Gewerbeflächen und der geplanten Tagebauseeflächen zu erwarten (thermische Ausgleichswinde)
- Das Wertespektrum reicht dabei in beiden Planvarianten von 0 bis maximal 47 m³/(s*m) bei einem Mittelwert von 8,0 (Variante A) bzw. 7,9 m³/(s*m) (Variante B), womit beide Szenarien ein vergleichbares Werteniveau aufweisen. Im Vergleich zum Ist-Zustand ist das Niveau jeweils um ca. 25 % geringer (Mittelwert 10,8 m³/(s*m)), was auf die bei beiden Tagebauseevarianten fehlenden Hangabwinde im Bereich der ungefüllten Tagebaugrube zurückzuführen ist (vgl. Anhang 2).
- Unterschiede zwischen beiden Szenarien sind anhand der Absolutwerte neben der jeweiligen Seefläche vor allem innerhalb der Plangebiete auszumachen. Diese lassen sich auf eine veränderte Reliefund Landnutzungssituation z.B. im Umfeld der A44/A61, des in Variante B angenommenen Gewerbegebietes sowie aufgefüllten Kiesgrube im Südosten zurückführen.

Karte 6: Differenzkarte des nächtlichen Kaltluftvolumenstroms.

Die Karte 6 zeigt, ähnlich wie bei der Differenzkarte zur nächtlichen Lufttemperatur, im Wesentlichen Abweichungen im Bereich der Tagebauseeflächen sowie im übrigen überplanten Bereich (= kombiniertes Plangebiet, violetter Rahmen). Außerhalb des Plangebiets treten nennenswerte Abweichungen überwiegend im Nahbereich (bis ca. in 1500 m Entfernung) der Tagebauseeflächen sowie östlich des Plangebiets (bis in ca. 1600 m Entfernung) auf. Dabei kommt es am westlichen Plangebietsrand durch die Verschiebung des Tagebausees zu Abnahmen von bis zu 9,3 m³/(s*m), welche die Ortslagen Kückhoven, Katzem und Kaulhausen tangieren. Hier stellt sich in etwa das Niveau des Ist-Zustandes wieder ein.

Zunahmen im Tagebauseeszenario B sind vor allem im direkten Umfeld des Tagebausees zu erwarten. Hierbei handelt es sich im Wesentlichen um einsetzende Flurwinde in Bereichen, welche zuvor außerhalb des Einflussbereiches der alten Tagebauseeplanungen gewesen sind. Mit Zunahmen von bis zu 8,7 m³/(s*m) wird das Kaltluftprozessgeschehen in der Ortschaft Jackerath aufgrund der direkten Lage an der Tagebauseevariante B deutlich intensiviert. Darüber hinaus sind lediglich geringfügige Zu- und Abnahmen des Kaltluftvolumenstroms, welche auf die Tagebauseeplanung zurückzuführen sind, zu erwarten. Die überwiegend deutliche Intensivierung der Kaltluftströmungen am östlichen Rand des Plangebietes sind auf die dort unterschiedlich angenommene Landnutzung und Reliefsituation zurückzuführen. So führt die Auffüllung bzw. Aufhaldung im Bereich der Kiesgrube zu Hangabwinden in überwiegend östliche Richtung (Frimmersdorf).

Die in Variante B angenommene gewerbliche Nutzung führt dagegen einerseits zu einsetzenden Flurwinden (lokale Zunahmen) und andererseits durch die Hinderniswirkung der Baukörper und Eingrünung zu lokalen Reduktionen der Kaltluftströmung. Die betroffenen Ortschaften Frimmersdorf und Gustorf werden dabei durch die neue Planung weitestgehend positiv beeinflusst.

Einfluss des Klimawandels

Wie beim Klimaparameter der bodennahen Lufttemperatur bereits beschrieben, sind wesentliche zusätzliche klimawandelbedingte Auswirkungen durch den Tagebausee im Nachgang der Befüllung des Tagebausees bei ansonsten gleichbleibenden Rahmenbedingungen nicht zu erwarten. So ergeben sich Veränderungen der Kaltluftströmung nur bei einer veränderten Relief- oder Landnutzungssituation. Letztere schließt auch eine dem allgemeinen Klimawandeltrend entgegenlaufende Veränderung der Gewässertemperatur (Verstärkung oder Minderung der Zunahme) mit ein. So würde eine deutlich verringerte Zunahme der Gewässertemperatur in der Nachtsituation zu einem verringerten Temperaturgradienten zwischen Tagebausee und Landfläche führen, was wiederum einen reduzierten Flurwindeffekt nach sich ziehen würde. Das Resultat wäre eine je nach Ausmaß leicht reduzierte Zunahme des Kaltluftvolumenstroms im Einflussbereich des Tagebausees. Dementgegen würde eine über den Klimawandel hinausgehende Erwärmung (z.B. durch einen wesentlichen externen Zufluss) zu tendenziell zunehmenden Flurwindeffekten führen.

5.1.3 Tagsituation: Physiologisch äquivalente Temperatur (PET)

Meteorologische Parameter wirken nicht unabhängig voneinander, sondern in biometeorologischen Wirkungskomplexen auf das Wohlbefinden des Menschen ein. Zur Bewertung werden Indizes verwendet (Kenngrößen), die Aussagen zur Lufttemperatur und Luftfeuchte, zur Windgeschwindigkeit sowie zu kurz- und langwelligen Strahlungsflüssen kombinieren. Wärmehaushaltsmodelle berechnen den Wärmeaustausch einer "Norm-Person" mit seiner Umgebung und können so die Wärmebelastung eines Menschen abschätzen¹.

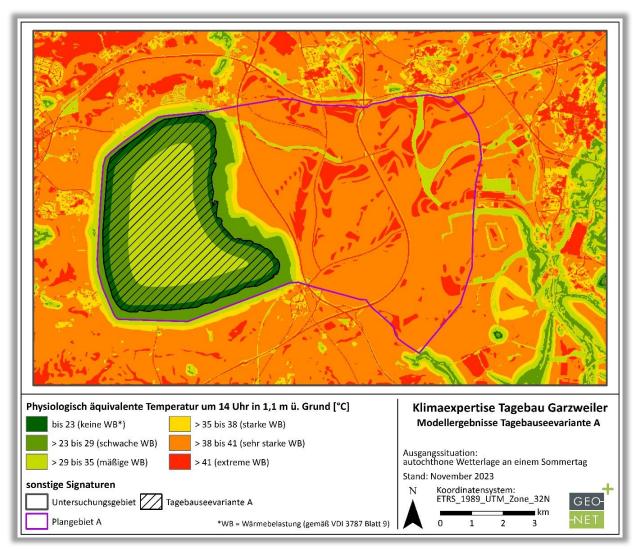
In der vorliegenden Analyse wird zur Bewertung der Tagsituation der humanbioklimatische Index PET um 14 Uhr herangezogen (Physiologisch Äquivalente Temperatur; MATZARAKIS & MAYER 1996). Gegenüber vergleichbaren Indizes hat die PET den Vorteil, aufgrund der °C-Einheit intuitiver nachvollzogen werden zu können². Darüber hinaus hat sich die PET in der Fachwelt zu einer Art "Quasi-Standard" entwickelt, sodass sich die Ergebnisse mit denen anderer Städte bzw. Untersuchungsräume vergleichen lassen. Wie die übrigen human-biometeorologischen Indizes bezieht sich die PET auf außenklimatische Bedingungen und zeigt eine starke Abhängigkeit von der Strahlungstemperatur (KUTTLER 1999). Mit Blick auf die Wärmebelastung ist sie damit vor allem für die Bewertung des Aufenthalts im Freien und am Tage einsetzbar. Für die PET existiert in der VDI-Richtlinie 3787, Blatt 9 eine absolute Bewertungsskala, die das thermische Empfinden und die physiologische Belastungsstufen quantifizieren (z.B. Starke Wärmebelastung ab PET 35 °C; siehe Tabelle 4).

Tabelle 4: Zuordnung von Schwellenwerten des Bewertungsindexes PET während der Tagstunden (nach VDI 2004).

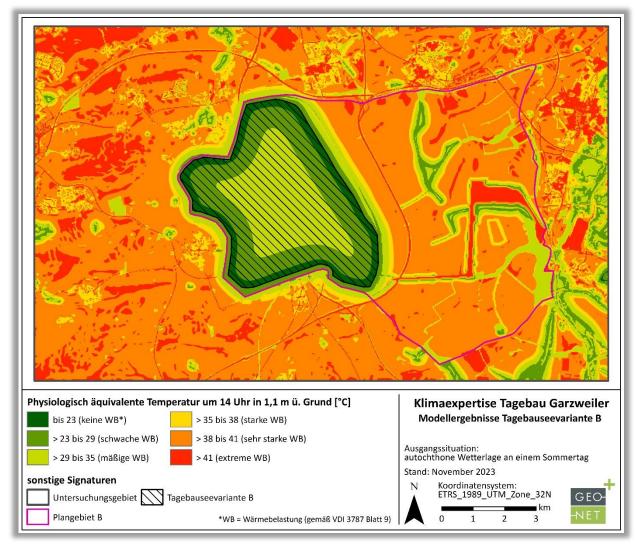
PET	Thermisches Empfinden	Physiologische Belastungsstufe
4 °C	Sehr kalt	Extreme Kältebelastung
8 °C	Kalt	Starke Kältebelastung
13 °C	Kühl	Mäßige Kältebelastung
18 °C	Leicht kühl	Schwäche Kältebelastung
20 °C	Behaglich	Keine Wärmebelastung
23 °C	Leicht warm	Schwache Wärmebelastung
29 °C	Warm	Mäßige Wärmebelastung
35 °C	Heiß	Starke Wärmebelastung
41 °C	Sehr heiß	Extreme Wärmebelastung

GEO-NET 41

_


¹ Energiebilanzmodelle für den menschlichen Wärmehaushalt bezogen auf das Temperaturempfinden einer Durchschnittsperson ("Klima-Michel" mit folgenden Annahmen: 1,75 m, 75 kg, 1,9 m² Körperoberfläche, etwa 35 Jahre; vgl. Jendritzky 1990).

² Beispiele für weitere Kenngrößen sind der PMV (Predicted Mean Vote) und UTCI (Universeller thermischer Klimaindex).

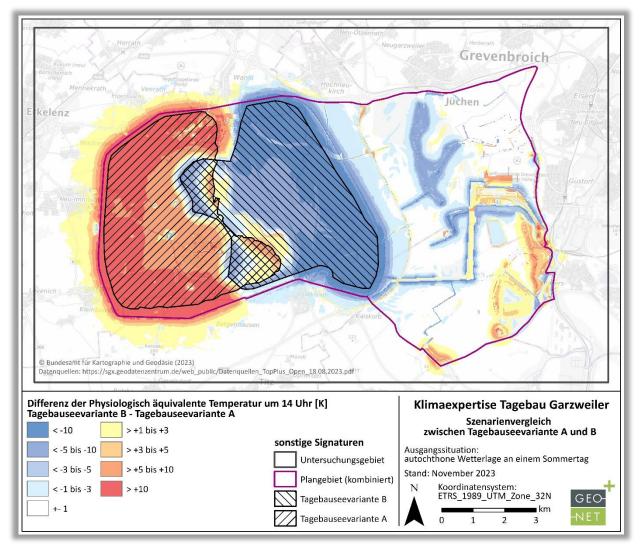

Die Karten 7 und 8 zeigen die jeweilige räumliche Verteilung der modellierten PET während einer sommerlichen autochthonen Wetterlage. Zusammenfassend zeigt sich dabei folgendes Bild:

- Eine starke (PET > 35 °C) bis extreme (PET > 41 °C) Wärmebelastung ist für die Bereiche der Freiflächen sowie der Siedlungs- und Gewerbeflächen zu erwarten. Innerhalb der locker bebauten Siedlungsflächen reduziert der angenommene Baumbestand und dessen Schattenwirkung einer noch stärkeren Wärmebelastung entgegen, wohingegen das hohe Bauvolumen innerhalb der Orts- bzw. Stadtkerne sowie Gewerbe- und Industriegebiete zu einer Verstärkung der Wärmebelastung führt.
- Eine schwache (PET < 29 °C) bis mäßige (PET < 35 °C) Wärmebelastung ist im Bereich von Wäldern, Gehölzen (Schattenwirkung) sowie Gewässern und deren direkten Umgebung zu erwarten. Besonders geringe Werte von teilweise unter 23 °C (keine Wärmebelastung) treten dabei an Waldrändern und verschatteten Uferbereichen der Tagebauseevarianten auf, da sich hier Schattenwirkung, Verdunstungskühlung und ein erhöhter Luftaustausch gegenseitig ergänzen.</p>

Karte 7: Physiologisch äquivalente Temperatur (PET) im Szenario der Tagebauseevariante A während einer autochthonen Wetterlage.

Karte 8: Physiologisch äquivalente Temperatur (PET) im Szenario der Tagebauseevariante B während einer autochthonen Wetterlage.

Vergleich der Tagebauseevarianten


In der Karte 9 werden die Modellergebnisse der beiden Tagebauseevarianten gegenübergestellt. Die gelbe bis rote Farbgebung weist dabei Flächen mit einer Erhöhung der PET im Szenario der Tagebauseevariante B aus, wohingegen die abgestuften Blautöne eine Reduktion der PET signalisieren.

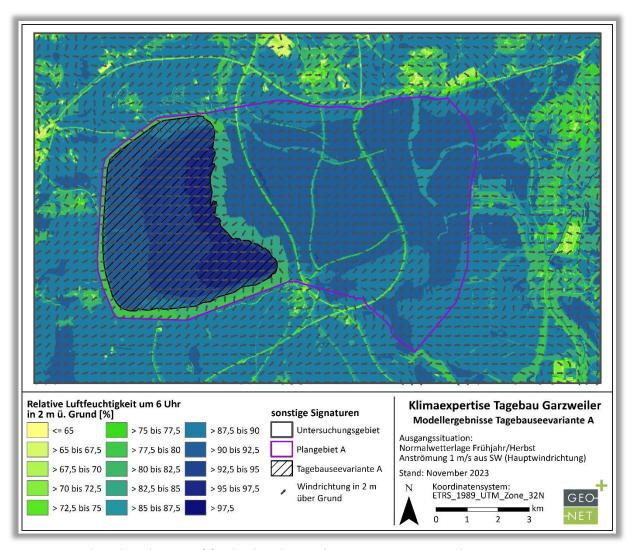
Aus der räumlichen Ausprägung der Abweichungen der Physiologisch äquivalenten Temperatur (PET) lassen sich folgende Aussagen ableiten:

- Die Verschiebung des Tagebausees bewirkt eine Verlagerung der Kühlwirkung der Gewässerfläche (bis zu -10 K) nach Osten, wodurch andere Flächen in den "Gunstbereich" des Tagebausees geraten. Hiervon profitiert z.B. der nördliche Teil der Ortschaft Jackerath, wohingegen sich die Ortschaften Kückhoven, Katzem und Kaulhausen nach der neuen Planung nicht mehr im Einflussbereich des Tagebausees befinden.
- Es zeigt sich, dass eine Kühlwirkung der Tagebauseevarianten von über 1 K eine Reichweite bis zu
 1300 m besitzt und in der Variante B beispielsweise bis zum Verlauf der A44 reicht. Differenzen

- darüber hinaus treten entweder nur sehr kleinräumig auf oder sind auf die abweichende Landnutzung bzw. Reliefsituation im östlichen Teil des (kombinierten) Plangebietes zurückzuführen.
- Die unterschiedlich angenommenen Gehölz- bzw. Waldstrukturen führen im Falle eines Waldes aufgrund der stärkeren Verschattung zu geringeren Wärmebelastungen. Die Auswirkungen sind räumlich allerdings vergleichsweise lokal ausgeprägt und wirken nicht über die Grenzen des Plangebietes hinaus.
- Das in Planvariante B angenommene Gewerbegebiet führt innerhalb der Fläche zu einer moderaten Erhöhung der thermischen Belastung aufgrund des erhöhten Bauvolumens. Durch die angenommene Eingrünung bzw. dessen Schattenwirkung werden die Randbereiche sowie das nähere Umfeld des Gewerbegebietes allerdings positiv beeinflusst.
- Insgesamt zeigt sich in beiden Tagebauseevarianten ein ähnliches Bild, was insbesondere auf die beinahe identische Gewässerflächengröße zurückzuführen ist. Dies verdeutlichen auch die mittleren Werte der PET von 37,44 °C (Variante A) und 37,38 °C (Variante B) bezogen auf das gesamte Untersuchungsgebiet. Im Vergleich zur Ist-Situation (PET=39,16 °C) zeigen beide Planszenarien eine deutlich geringere mittlere Wärmebelastung.

Karte 9: Differenzenkarte zur Physiologisch äquivalenten Temperatur (PET).

Einfluss des Klimawandels

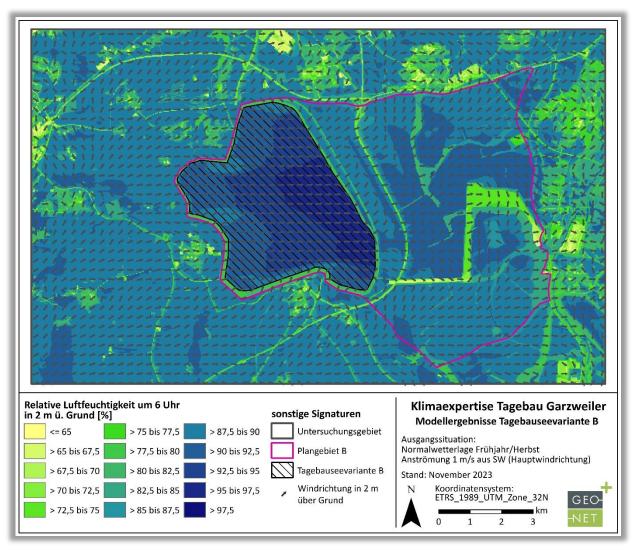

Wie bei den Klimaparametern der bodennahen Lufttemperatur und Kaltluftströmung bereits beschrieben, sind wesentliche zusätzliche klimawandelbedingte Auswirkungen durch den Tagebausee im Nachgang der Befüllung des Tagebausees bei ansonsten gleichbleibenden Rahmenbedingungen nicht zu erwarten. Veränderungen sind demnach lediglich bei veränderten Rahmenbedingungen wie beispielsweise einer abweichenden Gewässerrandstruktur, Seefläche und/oder Gewässertemperatur zu erwarten. So würde eine geringere Gewässertemperatur zu einer erhöhten Ausgleichsfunktion des Sees führen, da durch den erhöhten Temperaturunterschied zwischen Wasser- und Landfläche sich der Seewind am Tag tendenziell verstärkt. Andersrum sieht es bei höheren Gewässertemperaturen aus, was insbesondere nach bzw. während langanhaltenden Hitzeperioden der Fall sein kann. Durch den dann geringeren Temperaturunterschied zwischen Wasserund Landfläche schwächt sich der Seewind tagsüber, je nachdem wie sehr sich die Temperaturniveaus angleichen, ab. Die Gunstwirkung würde dadurch abnehmen, aber grundsätzlich noch vorhanden sein, da während sommerlicher Wärmebelastungen die sich schnell aufheizende Landfläche stets wärmer sein wird als die deutlich "trägere" Wasserfläche.

5.1.4 Ausprägung der relativen Luftfeuchte

Abweichend zu den zuvor betrachteten Klimaparametern wurde bei der Modellierung der relativen Luft-feuchtigkeit keine austauscharme autochthone Wetterlage, sondern eine Normalwetterlage mit südwestlicher Anströmung und einer Startfeuchte von 80 % zugrunde gelegt (vgl. Kap. 4.4). Anhand der 6 Uhr- (Tagesmaximum der relativen Luftfeuchtigkeit) und 15 Uhr- (Tagesminimum der relativen Luftfeuchtigkeit) Situation werden nachfolgend die grundsätzlichen Muster der Luftfeuchteverteilung für die Tag- und Nachtsituation und das jeweilige Modellszenario aufgezeigt.

6 Uhr-Situation

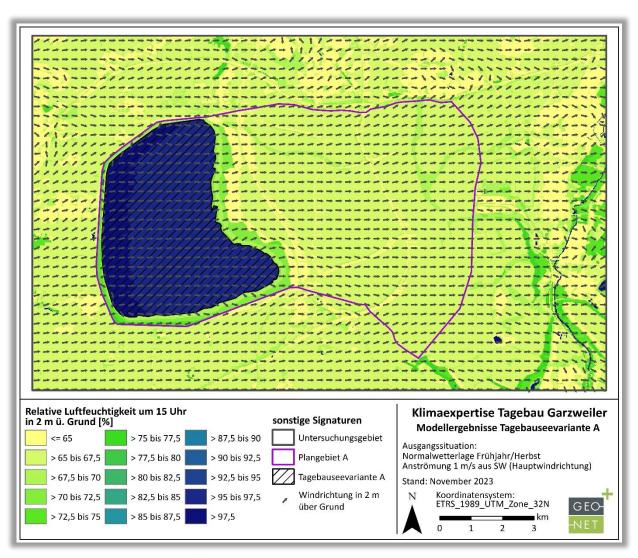
Karte 10: Verteilung der relativen Luftfeuchtigkeit der Tagebauseevariante A um 6 Uhr morgens.


Die Karten 10 und 11 zeigen die Modellergebnisse zur räumlichen Verteilung der relativen Luftfeuchtigkeit der beiden Tagebauseevarianten für die 6-Uhr-Situation. Das Wertespektrum der relativen Luftfeuchtigkeit reicht in den frühen Morgenstunden in beiden Planszenarien von etwa 65 bis 70 % im Bereich der Industrieflächen bis hin zu stellenweise knapp 100 % über dem jeweils westlichen Teil des Tagebausees, welcher als bedeutsame Feuchtequelle fungiert. Neben den gewässerbeeinflussten Bereichen zeigen die offenen Freiflächen mit rund 90 % die höchsten Werte der relativen Luftfeuchte. Wald- und Gehölzflächen weisen mit rund 80 bis 85 % eine insgesamt durchschnittliche relative Luftfeuchtigkeit auf, wohingegen Siedlungsflächen je nach Überbauungsgrad die geringsten Werte aufweisen (ca. 65 bis 82,5 %).

Bei beiden Varianten ist leeseitig eine nach Osten gerichtete Ausbreitung leicht erhöhter rel. Luftfeuchtigkeit festzustellen. Die relative Luftfeuchtigkeit erreicht östlich der jeweiligen Seeflächen weiträumig Werte von über 90 %, wobei die Variante B im Vergleich zu Variante A eine leicht reduzierte Feuchteverlagerung nach Nordosten zeigt. Letzteres kann auf die abweichende Reliefsituation in Form der Anhöhe nordöstlich der Tagebauseevariante B zurückgeführt werden, welche die Ausbreitung nach Nordosten abmindert.

Die Ausbreitungsrichtung entspricht in etwa der angenommenen Anstromsituation (Hauptwindrichtung aus Südwest), wobei die Strömungsrichtung (Pfeilsignatur) über den Seeflächen jeweils auf West dreht und erst östlich der Seefläche tendenziell wieder auf Südwest zurückschwenkt. Mit einer Erhöhung von rund 2 % gegenüber dem Ist-Zustand sind die Auswirkungen beider Planszenarien als gering einzustufen, wobei die Reichweite über die östliche Plangebietsgrenze hinaus geht.

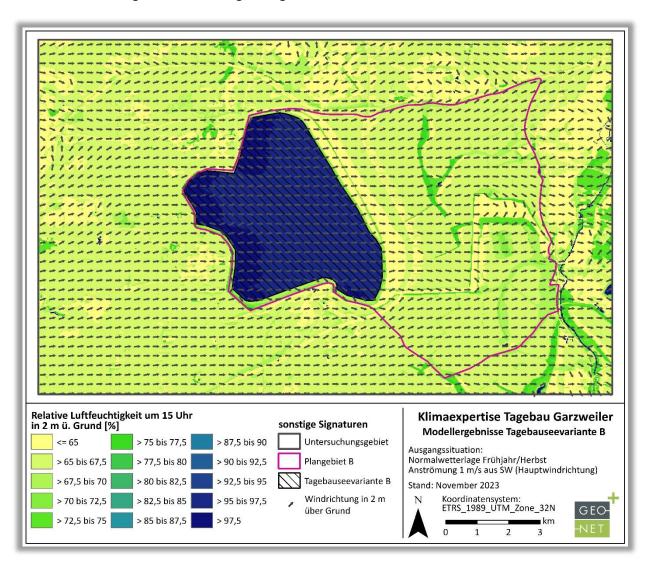
Anhand der Pfeilsignaturen lässt sich ableiten, dass am östlichen Seeufer jeweils die zum See gerichteten Landwinde die allgemeine Strömungsrichtung überlagern. Dadurch erklärt sich auch die relativ geringe relative Luftfeuchte (< 90 %) im östlichen Uferbereich der Tagebauseevariante B. Die Verlagerung erfolgt hier vorrangig in höheren Luftschichten und wird erst ab der A44 wieder auf bodennahem Niveau sichtbar.



Karte 11: Verteilung der relativen Luftfeuchtigkeit der Tagebauseevariante B um 6 Uhr morgens.

15 Uhr-Situation

Die Karten 12 und 13 zeigen die räumliche Verteilung der relativen Luftfeuchte um 15 Uhr und somit zum Zeitpunkt der höchsten Lufttemperatur des Tages. Das Werteniveau der relativen Luftfeuchtigkeit liegt am Nachmittag mit durchschnittlich 69 % in beiden Planszenarien im Mittel rund 19 % niedriger als um 6 Uhr morgens, wobei die jeweilige Seefläche mit durchgängig über 95 % weiterhin ein sehr hohes Werteniveau aufweist. Die Freiflächen und Siedlungslagen weisen mit rund 67,5 % bzw. 60 % aufgrund der stärkeren Erwärmung am Tag die geringsten relativen Luftfeuchten auf, wohingegen die Wald- und Gehölzflächen einen deutlich gedämpfteren Tagesgang aufweisen. So schwankt die relative Luftfeuchtigkeit lediglich zwischen rund 85 % in den Nacht- bzw. Morgenstunden und ca. 75 bis 80 % am Nachmittag.


Karte 12: Verteilung der relativen Luftfeuchtigkeit der Tagebauseevariante A um 15 Uhr.

Auf der Ostseite beider Tagebauseevarianten zeigt sich ein ca. 500 bis 1000 m breiter Streifen mit einer leicht reduzierten relativen Luftfeuchtigkeit von bis zu -6,2 %. Dieser Effekt ist auf am Nachmittag einsetzende Seewinde zurückzuführen, welche auf der Ostseite durch die übergeordnete Anströmung aus Südwesten verstärkt werden. Trotz der relativ feuchten Seeluft führt die vorrangig nach Osten gerichtete Verlagerung aufgrund der deutlich geringeren Lufttemperatur über dem Tagebausee zu einer Reduktion der relativen Luftfeuchtigkeit über der wärmeren Landfläche. Die Reduktion hat dabei eine maximale Reichweite von ca.

1 km und nimmt mit zunehmender Entfernung sukzessive ab. Mit Abnahmen im Bereich von zumeist -1 bis - 4 % sind hinsichtlich der zu berücksichtigenden Schutzgüter (Mensch, Landwirtschaft, Tier- und Pflanzenarten) keine relevanten Auswirkungen zu erwarten.

Beim Vergleich beider Planszenarien sind durch die Verlagerung des Tagebausees keine wesentlichen Unterschiede festzustellen. Größere Abweichungen zwischen den beiden Szenarien sind lediglich im Bereich einer veränderter Landnutzung und dessen direkter Umgebung zu erwarten. So verringert sich die relative Feuchte innerhalb des angenommenen Gewerbegebietes in Variante B gegenüber der in Variante B angenommenen Freifläche. Auswirkungen über die Plangebietsgrenzen hinaus sind nicht zu erwarten

Karte 13: Verteilung der relativen Luftfeuchtigkeit der Tagebauseevariante B um 15 Uhr.

Einfluss des Klimawandels

Wie auch bei den zuvor behandelten Parametern bereits beschrieben, sind wesentliche zusätzliche klimawandelbedingte Auswirkungen durch den Tagebausee im Nachgang der Befüllung (ab 2060) bei ansonsten gleichbleibenden Rahmenbedingungen nicht zu erwarten. Veränderungen sind demnach lediglich bei veränderten Rahmenbedingungen wie beispielsweise einer abweichenden Gewässerrandstruktur, Seefläche, Gewässertemperatur und/oder Anstromsituation zu erwarten. Ein breiterer Gehölzsaum würde beispielsweise eine tendenziell dämpfende Wirkung auf die Ausbreitung der feuchten Seeluft besitzen, wohingegen ein

reduzierter Gehölzsaum die Ausbreitung tendenziell fördern würde. Einen größeren Einfluss hätte dagegen eine veränderte Anstromsituation, welche aber nicht klimawandelbedingt wäre, sondern je nach Wetterlage prinzipiell jederzeit auftreten kann. So wären je nach Windrichtung andere Uferbereiche von den Einflüssen des geplanten Tagebausees betroffen.

Auch eine abweichende Wassertemperatur kann einen Einfluss auf das Ausmaß der Auswirkungen haben, allerdings nur wenn die Temperaturänderung wesentlich vom allgemeinen klimawandelbedingten Trend abweicht und sich somit der Temperaturunterschied zwischen Wasser- und Landfläche wesentlich verändert. Da die Herbst- bzw. Frühjahrszirkulation allerdings aufgrund der hier starken Durchmischung eine relativ geringe Temperaturschwankung erwarten lässt, sind die potenziellen Auswirkungen hier relativ gering einzuschätzen.

Abweichungen je nach Wetterlage sind darüber hinaus grundsätzlich jederzeit möglich, sind in dem Fall allerdings nicht direkt vom Klimawandel beeinflusst.

6. Bewertung der klimaökologischen Situation

6.1 KLIMAÖKOLOGISCHE SITUATION

Aus den vorliegenden Modellergebnissen zur klimaökologischen Situation lassen sich folgende Aussagen ableiten:

- Die Modifikationen des nächtlichen Temperaturfeldes durch die Anlage eines Tagebausees beschränken sich im Untersuchungsgebiet auf einen relativ engen Saum um die Seefläche. So ist in beiden Planvarianten lediglich bis in maximal 300 m Entfernung zum Seeufer von Modifikationen der nächtlichen Lufttemperatur auszugehen.
- Die weiteren Abweichungen des nächtlichen Temperaturfeldes sind auf eine veränderte Landnutzung (z.B. in Variante B angenommenes Gewerbegebiet) und Reliefsituation (z.B. Aufhaldung im Bereich der Kiesgrube in Variante B) zurückzuführen.
- Zusammenfassend unterscheiden sich die beiden Seevarianten in ihrem Einfluss auf das nächtliche Temperaturfeld nur geringfügig (s. dazu Abb. 8). Wesentliche Auswirkungen über die Grenzen des Plangebietes sind zudem nicht zu erwarten.
- Durch die jeweilige Anlage der beiden Tagebauseevarianten kommt es nachts im Bereich der Wasserflächen sowie im Umkreis von rund 1.600 m zu einer Intensivierung des Kaltluftvolumenstroms aufgrund einsetzender Flurwinde. Die Verschiebung der Seefläche nach Osten in Variante B bewirkt demzufolge einen abweichenden Wirkbereich der Seefläche.
- Siedlungstechnisch liegen in Variante A vor allem die Ortschaften Kückhoven, Katzem und Kaulhausen im Einflussbereich des Tagebausees, wohingegen in Variante B die ufernahen Ortschaften Jackerath und Holzweiler eine deutliche Intensivierung des Kaltluftvolumenstroms erfahren.
- Die uferbegleitenden Grün- und Gehölzstrukturen in der im Lageplan am nördlichen Uferrand dargestellten Ausprägung haben nur einen geringen Einfluss auf die Strömungsdynamik.
- Die weiteren Modifikationen der nächtlichen Kaltluftströmung im Osten des Plangebietes sind im Wesentlichen auf die veränderte Reliefsituation (z.B. Aufhaldung im Bereich der Kiesgrube) und

Änderungen der Nutzungsstruktur (Gewerbegebiet und Gehölz- bzw. Waldstrukturen) zurückzuführen. Außerhalb des Plangebietes erfahren die Siedlungslagen von Frimmersdorf und Gustorf hierdurch eine Erhöhung der Kaltluftströmung.

- Insgesamt zeigt sich für beide Seevarianten ein vergleichbarer Einfluss auf das nächtliche Kaltuftprozessgeschehen (Mittelwert des Kaltluftvolumenstroms 8,0 (Variante A) bzw. 7,9 m³/(s*m) (Variante B)). Aufgrund der Verschiebung der Seefläche profitieren dabei unterschiedliche Siedlungslagen (s.o.) von der Intensivierung der Kaltluftströmung im Umfeld der jeweiligen Seefläche.
- In der Tagsituation weist das jeweilige Umfeld der beiden Tagebauseevarianten durch die Kühlwirkung der Wasserfläche (Seewindeffekt) eine deutliche Reduktion der Physiologisch Äquivalenten Temperatur (PET) bzw. Wärmebelastung Tag. Die Reichweite dieser durch den jeweiligen Gehölzsaum (Schattenwirkung) verstärkten Gunstwirkung reicht dabei bis in ca. 1.300 m Entfernung zum Tagebausee, wobei die Auswirkungen mit zunehmender Entfernung sukzessive abnehmen.
- In diesem Saum um die jeweilige Seevariante kann die PET (Physiologisch äquivalente Temperatur) durch die Verdunstungskühlung der Seefläche deutlich um bis zu 10°C PET abgesenkt werden.
- Dieser Effekt in Kombination mit der Verschattung und Verdunstungskühlung des Grün-/Gehölzsaums führt zu einer positiven humanbioklimatischen Situation im Nahfeld beider Planungsvarianten des Seekörpers.
- Die beiden Planvarianten unterscheiden sich in ihrer humanbioklimatischen Beurteilung am Tag nur geringfügig. Aufgrund der Verschiebung der Seefläche verlagert sich allerdings der Gunstbereich des Tagebausees, wodurch abweichende Siedlungslagen von der Kühlwirkung während eines heißen Sommerstages profitieren.
- Eine Verkehrsgefährdung durch ein erhöhtes Feuchteangebot im Nahfeld der beiden Seevarianten ist nur im geringen Maße zu erwarten. Eine leicht gesteigerte Neigung zur Nebelbildung ist allerdings bei beiden Seevarianten in den östlich angrenzenden vorrangig landwirtschaftlich genutzten Bereichen (Frühjahr und Herbst) zu erwarten, wobei bei der Variante B eine geringere Fläche betroffen ist. Die abweichende Reliefsituation (Anhöhe nordöstlich der Tagebauseevariante B) mindert die Feuchteausbreitung in Variante B deutlich ab.
- Die A44/A61 liegen jeweils im Wirkbereich der beiden Tagebauseevarianten, weshalb in beiden Szenarien bei entsprechender Anströmung von einer leicht erhöhten Nebelgefährdung ausgegangen werden kann. Die Variante B stellt sich dabei aufgrund der geringeren Feuchteverlagerung als günstiger dar.
- Ein erhöhtes Feuchteangebot (in Verbindung mit den tendenziell höheren Temperaturen) im Nahfeld der beiden Seevarianten kann das Risiko von Pflanzenkrankheiten in landwirtschaftlichen Anbauflächen erhöhen (insbesondere Pilzbefall). Ein tendenziell höheres Feuchteangebot ist nachts und in den frühen Morgenstunden in den an den Tagebausee in östlich angrenzenden Landwirtschaftsflächen zu erwarten, sowohl in Variante A als auch in Variante B. Dabei stellt sich die aktuelle Planung Variante B günstiger dar als der alte Planungsstand. Tagsüber sind in beiden Varianten keine relevanten Auswirkungen zu erwarten.

6.2 KLIMAWANDEL

Die Auswertungen hinsichtlich des zu erwartenden Klimawandels zeigen auf, welche zukünftigen meteorologischen Rahmenbedingungen im Untersuchungsgebiet herrschen werden. Festzuhalten ist zunächst:

- Alle Modellszenarien zeigen einen deutlichen Trend zu Temperaturerhöhung (Indikator: Tagesmitteltemperatur). Zurzeit ist das RCP 8.5 das Szenario, das die aktuelle Temperaturentwicklung am realistischsten abbildet. Daraus lässt sich ableiten, dass in der "Mittleren Zukunft" ein Temperaturanstieg von bis zu + 3,1 °C gegenüber der Referenzperiode 1971-2000 zu erwarten ist.
- Gleichzeitig verschiebt sich das Niederschlagsregime: Winterniederschläge nehmen in allen Perioden zu (hier gezeigt am Szenario RCP 8.5 und 4.5; Abb. 8). Gleichzeitig verringern sich die Sommerniederschläge. In Summe verringert sich auch die Niederschlagssumme tendenziell (s. Tabelle 2).
- Die potenzielle Verdunstung in den Sommermonaten insbesondere in den Monaten Juli und August (vgl. Abb. 9) steigt stark an. In Kombination mit den tendenziell verringerten Sommerniederschlägen (Abb. 8) kann dies zu einer Verlängerung der Trockenperioden führen.
- Die Anzahl der Frosttage nimmt über alle Szenarien hinweg stark ab. Bis zur Mitte des Jahrhunderts kann von einer Halbierung der Frosttage ausgegangen werden. Den gleichen Trend zeigen die Tage mit Frost-Tau-Wechsel.

Für das Themenfeld "Mensch" im Untersuchungsgebiet kann daraus abgeleitet werden:

- Der See und die angrenzenden grüngeprägten Freiflächen werden in Zukunft eine noch wichtigere Erholungsfunktion für die Bevölkerung im Umfeld einnehmen. Das niedrige bioklimatische Belastungsniveau im Nahfeld des Sees kann eine wichtige klimatische Wohlfahrtswirkung für die Bevölkerung erbringen.
- Die Wärmebelastung in den Siedlungslagen insbesondere auch der Ortslage Holzweiler wird steigen. Die nächtliche Kaltluftproduktion auf den landwirtschaftlichen Flächen im Umfeld bekommt eine wichtige klimaökologische Ausgleichsfunktion. Ein merklicher Unterschied zwischen den beiden Planvarianten ist dabei nicht zu erwarten.
- Das Gefährdungspotenzial für den "Verkehr" insbesondere im Bereich der A44/A61 durch Glätte und Nebelbildung wird tendenziell sinken. Demnach wirkt der zu erwartende Klimawandel durch eine abnehmende Anzahl an Frosttagen dem erhöhten Feuchtigkeitsaufkommen mittel- bis langfristig entgegen.
- Durch die im Zuge des Klimawandels steigenden Temperaturen bei gleichzeitig h\u00f6herer Feuchte, welche durch die entstehende Gew\u00e4sserfl\u00e4che entsteht, kann der Pilzbefall auf landwirtschaftliche Fl\u00e4chen steigen. Dies gilt insbesondere f\u00fcr die \u00f6stlich des entstehenden Tagebausees gelegenen Fl\u00e4chen (vgl. Karten 10 und 11). Durch einen gro\u00dfz\u00e4gigigeren Geh\u00f6lzstreifen am \u00f6stlichen Uferstreifen der jeweiligen Tagebauseevariante oder einer Gel\u00e4ndeerh\u00f6hung k\u00f6nnte gegebenenfalls die Feuchteausbreitung nach Osten abgeschw\u00e4cht werden.

6.3 **FAZIT**

Die klimaökologischen Auswirkungen des ursprünglich geplanten Tagebausees (Variante A) und der neu geplanten zukünftigen Tagebauseevariante B sind vergleichbar. Unterschiede in der Wirkintensität sind nach der Gegenüberstellung beider Planungsvarianten nur in geringem Maße festzustellen, allerdings verlagert sich der durch den Tagebausee entstehende Gunstbereich hinsichtlich des Kaltluftprozessgeschehens und der Wärmebelastung Tage nach Osten, wodurch abweichende Siedlungslagen von den Positiveffekten des Sees profitieren. Eine Verschlechterung der bioklimatischen Situation durch die beiden Seevarianten ist gegenüber dem Ist-Zustand aber nicht zu erwarten. Lediglich die weiteren Planungen im östlichen Teil des Plangebietes können zu einer Beeinträchtigung der bioklimatischen Situation führen. So führt die angenommene gewerbliche Nutzung im Bereich der heutigen Tagesanlagen/ des Kohlebunkers zu einer lokalen Erhöhung der thermischen Belastung (insbesondere nachts), wobei Auswirkungen auf andere Siedlungslagen kaum zu erwarten sind. Zudem sind innerhalb der Flächen mit Wald- und Gehölzstrukturen erstere aufgrund ihrer höheren bioklimatischen Gunstwirkung vorzuziehen.

Durch die zu erwartenden regionalen Auswirkungen des Klimawandels ergeben sich keine Modifikationen in der Bewertung der unterschiedlichen Planungsstände. Für beide Varianten gilt dabei, dass die Erholungsfunktion des Sees aufgrund der zukünftig steigenden Temperaturen eine zunehmende Bedeutung erfahren wird.

Das Beeinträchtigungspotenzial für die Landwirtschaft und auch das Gefährdungspotenzial für den Verkehr durch Nebelbildung bzw. Frostgefährdung ist in Variante B aufgrund der geringeren Feuchteausbreitung als günstiger einzustufen. Positiv wirkt sich in diesem Zusammenhang das ansteigende Gelände nordöstlich der Tagebauseevariante B aus.

Zusammenfassend kann festgehalten werden, dass die aktuelle Planung zum Tagebausee - Variante B - als klimaökologisch leicht günstiger einzustufen ist als die "alte" Seevariante. Dies ist im Wesentlichen auf die insgesamt geringere Ausbreitung der Luftfeuchte zurückzuführen.

> **GEO-NET Umweltconsulting GmbH** Hannover, den 16.01.2024

Erstellt von:

Jonas Kaup (M.Sc. Landschaftswissenschaften)

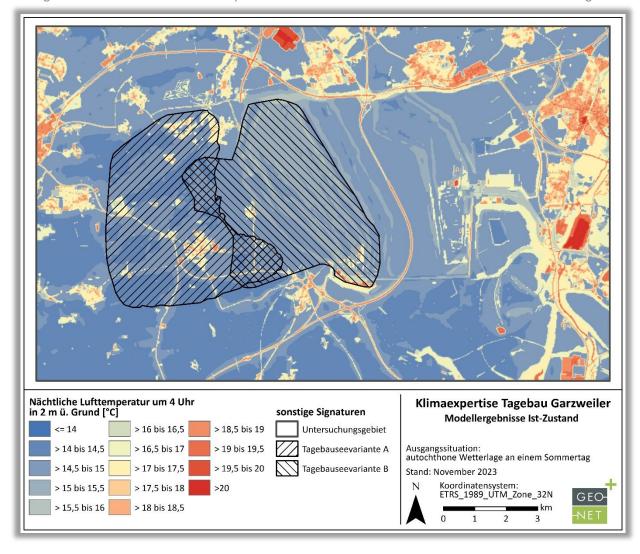
Geprüft von:

Dipl.-Geogr. Peter Trute

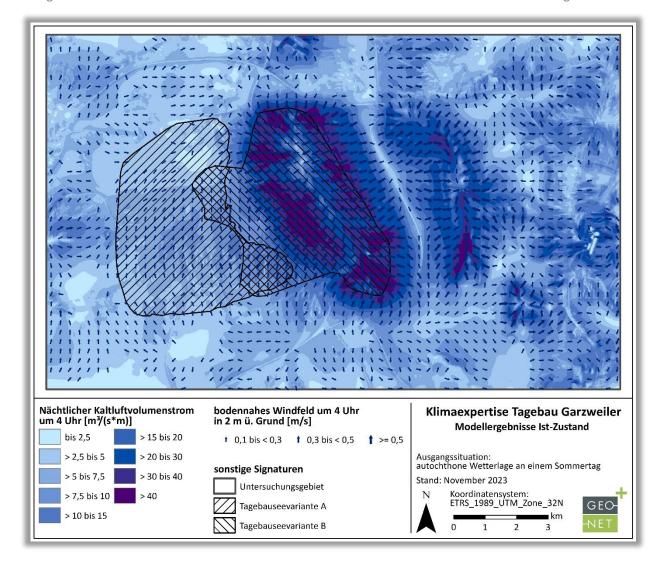
Die Erstellung dieses Klimagutachtens erfolgte entsprechend dem Stand der Technik nach bestem Wissen und Gewissen. Das Klimagutachten bleibt bis zur Abnahme und Bezahlung alleiniges Eigentum des Auftragnehmers. Eigentum und Nutzungsrecht liegen bei den Auftraggebern.

Literatur

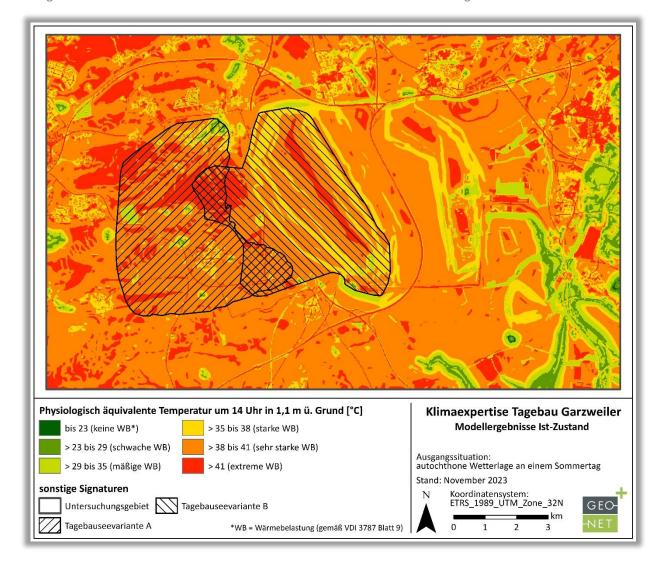
- DONAT M. G., LECKEBUSCH G. C., PINTO J. G., ULBRICH U. (2010): European storminess and associated circulation weather types: future changes deduced from a multi-model ensemble of GCM simulations. Climate Research 42:27–43.
- DWD DEUTSCHER WETTERDIENST (2022): Wetterlexikon (Homepage). Online: www.dwd.de/DE/service/lexikon/lexikon_node.html (Abruf 22.11.2022).
- FANGER P. O. (1972): Thermal Comfort, Analysis and Application in Environmental Engineering, New York: Mc Graw Hill
- FINK A. H., POHLE S., PINTO J. G., KNIPPERTZ P. (2012): Diag-nosing the influence of diabatic processes on the explo-sive deepening of extratropical cyclones. Geophysical Research Letters 39:L07803.
- CLIMATE SERVICE CENTER GERMANY (GERICS) (2012): Albedo. Online: https://www.climate-service-center.de/products_and_publications/publications/detail/062675/index.php.de (Abruf: 26.09.2023)
- GROSS, G. (1989): Numerical simulation of the nocturnal flow systems in the Freiburg area for different to-pographies. Beitr. Phys. Atmosph., H 62, S. 57-72.
- GROSS, G. (1993): Numerical Simulation of canopy flows. Springer Verlag Heidelberg
- GROSS, G. (2002): The exploration of boundary layer phenomena using a nonhydrostatic mesoscale model. Meteor. Z.schr. Vol. 11 Nr. 5., S. 701-710.
- JENDRITZKY G. et al. (1990): Methodik zur räumlichen Bewertung der thermischen Komponente im Bioklima des Menschen, Fortgeschriebenes Klima-Michel-Modell, Jendritzky G., Menz G., Schmidt-Kessen W., Schirmer H., Beiträge der Akademie für Raumforschung und Landesplanung Nr. 114, Hannover
- KUTTLER W., D. DÜTEMEYER (2003): Umweltmeteorologische Untersuchungsmethoden. Deutscher Wetterdienst Offenbach [Hrsg.], Promet 30, Nr. 1/2, S. 15 27
- KUTTLER W. (2010): Urbanes Klima, Teil 1. In: Gefahrstoffe Reinhaltung der Luft, Umweltmeteorologie, 70, Nr. 7/8 Juli/August, S. 329-340. Teil 2. In: Gefahrstoffe Reinhaltung der Luft, Umweltmeteorologie, 70, Nr. 9 September, S. 378-382.
- Kiese, O. (1988): Die Bedeutung verschiedenartiger Freiflächen für die Kaltluftproduktion und die Frischluftversorgung von Städten. Landschaft + Stadt 20, H. 2: 67-71
- LANDESAMT FÜR NATUR, UMWELT UND VERBRAUCHERSCHUTZ NORDRHEIN-WESTFALEN (2023): Klimaatlas NRW. https://www.klimaatlas.nrw.de/ (Letzter Zugriff: 22.09.2023)
- LINKE, C. ET AL (2016): Leitlinien zur Interpretation regionaler Klimamodelldaten des Bund-Länder-Fachgespräches "Interpretation regionaler Klimamodelldaten", Potsdam, Nov. 2016
- MATZARAKIS, A. (2001): Die thermische Komponente des Stadtklimas. Berichte des Meteorologischen Institutes der Universität Freiburg Nr. 6. Juli 2001, Freiburg, 287 S.



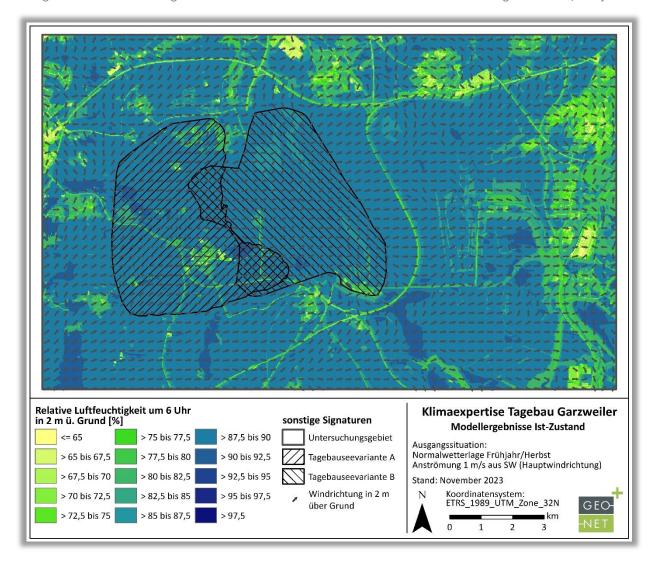
- MARX, A. (2016): Wie das Seenland das Wetter beeinflusst. Online: https://www.saechsische.de/wie-das-seenland-das-wetter-beeinflusst-3456893.html (Abruf: 21.9.2023)
- MAYER et al. (1994): Bestimmung von stadtklimarelevanten Luftleitbahnen. UVP-Report 5/94, S. 265 267
- MCDONALD R. E. (2011): Understanding the impact of cli-mate change on Northern hemisphere extra-tropical cyclones. Climate Dynamics 37:1399-1425.
- MOSIMANN et al. (1999): Schutzgut Klima/Luft in der Landschaftsplanung. Informationsdienst Naturschutz Niedersachsen, Heft 4/99, S. 202-275.
- PINTO J. G., RYERS M. (2017): Winde und Zyklonen. In: BRAS-SEUR G., JACOB D., SCHUCK-ZÖLLER S. (HRSG.) (2017): Klimawandel in Deutschland.
- PINTO J. G., ZACHARIAS S., FINK A. H., LECKEBUSCH G. C., UL-BRICH U. (2009): Factors contributing to the development of extreme North Atlantic cyclones and their rela-tionship with the NAO. Climate Dynamics 32:711–737
- VDI (2003): Richtlinie VDI 3787 Blatt 5 Umweltmeteorologie Lokale Kaltluft. Verein Deutscher Ingenieure, Düsseldorf.
- VDI (2004): Richtlinie VDI 3787 Blatt 9 Umweltmeteorologie Berücksichtigung von Klima und Lufthygiene in der räumlichen Planung. Verein Deutscher Ingenieure, Düsseldorf.
- VDI (2008a): Richtlinie VDI 3787 Blatt 2. Umweltmeteorologie Methoden zur human-biometeorologischen Bewertung von Klima und Lufthygiene für die Stadt- und Regionalplanung Teil I: Klima. VDI Verein Deutscher Ingenieure Düsseldorf.
- VDI (2008b): Richtlinie VDI 3785, Blatt 1, Umweltmeteorologie Methodik und Ergebnisdarstellung von Untersuchungen zum planungsrelevanten Stadtklima, Verein Deutscher Ingenieure, Düsseldorf.
- VDI (2015): Richtlinie VDI 3787 Blatt 1. Umweltmeteorologie Klima- und Lufthygienekarten für Städte und Regionen. Verein Deutscher Ingenieure, Düsseldorf.


Anhang

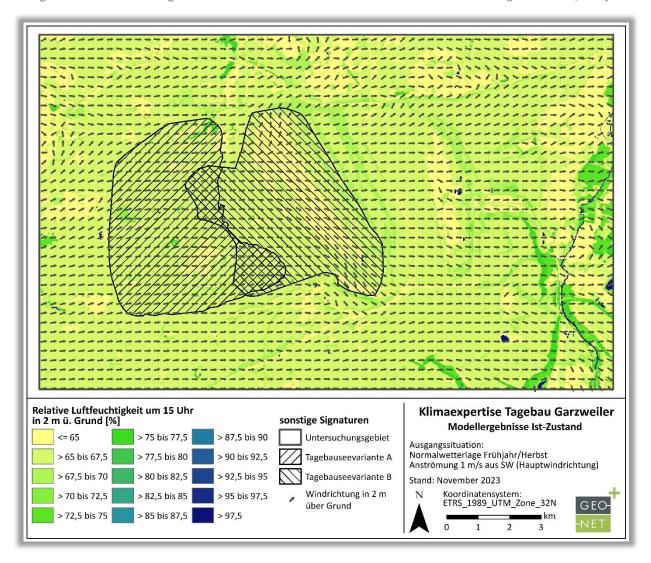
Anhang 1: Nächtliche bodennahe Lufttemperatur des Ist-Zustandes während einer autochthonen Wetterlage.



Anhang 2: Nächtlicher Kaltluftvolumenstrom des Ist-Zustandes während einer autochthonen Wetterlage.


GEO-NET

Anhang 3: Bodennahe PET des Ist-Zustandes während einer autochthonen Wetterlage.



Anhang 4: Relative Luftfeuchtigkeit um 6 Uhr im Ist-Zustand während einer Normalwetterlage im Herbst/Frühjahr.

Anhang 5: Relative Luftfeuchtigkeit um 15 Uhr im Ist-Zustand während einer Normalwetterlage im Herbst/Frühjahr.

